Browsing by Author "Wei, Dongyang"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Alleviating Water Scarcity by Optimizing Crop MixesRichter, Brian D.; Ao, Yufei; Lamsal, Gambhir; Wei, Dongyang; Amaya, Maria; Marston, Landon T.; Davis, Kyle F. (Nature Portfolio, 2023-11)Irrigated agriculture dominates freshwater consumption globally, but crop production and farm revenues suffer when water supplies are insufficient to meet irrigation needs. In the United States, the mismatch between irrigation demand and freshwater availability has been exacerbated in recent decades due to recurrent droughts, climate change and over extraction that dries rivers and depletes aquifers. Yet, there has been no spatially detailed assessment of the potential for shifting to new crop mixes to reduce crop water demands and alleviate water shortage risks. In this study, we combined modelled crop water requirements and detailed agricultural statistics within a national hydrological model to quantify sub-basin-level river depletion, finding high-to-severe levels of irrigation scarcity in 30% of sub-basins in the western United States, with cattle-feed crops—alfalfa and other hay—being the largest water consumers in 57% of the region’s sub-basins. We also assessed recent trends in irrigation water consumption, crop production and revenue generation in six high-profile farming areas and found that in recent decades, water consumption has decreased in four of our study areas—a result of a reduction in the irrigated area and shifts in the production of the most water-consumptive crops—even while farm revenues increased. To examine the opportunities for crop shifting and fallowing to realize further reductions in water consumption, we performed optimizations on realistic scenarios for modifying crop mixes while sustaining or improving net farm profits, finding that additional water savings of 28–57% are possible across our study areas. These findings demonstrate strong opportunities for economic, food security and environmental co-benefits in irrigated agriculture and provide both hope and direction to regions struggling with water scarcity around the world.
- New water accounting reveals why the Colorado River no longer reaches the seaRichter, Brian D.; Lamsal, Gambhir; Marston, Landon T.; Dhakal, Sameer; Sangha, Laljeet Singh; Rushforth, Richard R.; Wei, Dongyang; Ruddell, Benjamin L.; Davis, Kyle Frankel; Hernandez-Cruz, Astrid; Sandoval-Solis, Samuel; Schmidt, John C. (Springer Nature, 2024-03-28)Persistent overuse of water supplies from the Colorado River during recent decades has substantially depleted large storage reservoirs and triggered mandatory cutbacks in water use. The river holds critical importance to more than 40 million people and more than two million hectares of cropland. Therefore, a full accounting of where the river’s water goes en route to its delta is necessary. Detailed knowledge of how and where the river’s water is used can aid design of strategies and plans for bringing water use into balance with available supplies. Here we apply authoritative primary data sources and modeled crop and riparian/wetland evapotranspiration estimates to compile a water budget based on average consumptive water use during 2000–2019. Overall water consumption includes both direct human uses in the municipal, commercial, industrial, and agricultural sectors, as well as indirect water losses to reservoir evaporation and water consumed through riparian/wetland evapotranspiration. Irrigated agriculture is responsible for 74% of direct human uses and 52% of overall water consumption. Water consumed for agriculture amounts to three times all other direct uses combined. Cattle feed crops including alfalfa and other grass hays account for 46% of all direct water consumption.