Browsing by Author "Weithman, Chelsea E."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Contrasting long-term population trends of beach-nesting shorebirds under shared environmental pressuresKwon, Eunbi; Robinson, Samantha G.; Weithman, Chelsea E.; Catlin, Daniel H.; Karpanty, Sarah M.; Altman, Jon; Simons, Theodore R.; Fraser, James D. (Elsevier, 2021-08-01)Identifying the drivers of long-term population change is a key goal of ecological studies. It is complicated by extrinsic and intrinsic factors that may covary with time and/or operate on a time lag. For migratory shorebirds that breed on the barrier islands of eastern North America, populations may be limited by the anthropogenic, climatic, biological environments they encounter throughout the annual cycle. Using three-decades (1989–2017) of breeding monitoring data collected by the National Park Service at two national seashores in North Carolina (Hatteras and Lookout), we examined the potential drivers of nesting piping plover (Charadrius melodus) and American oystercatcher (Haematopus palliates) populations. Hatteras had five times more annual visitors than Lookout, and our modelling revealed a strong negative relationship between the population size of breeding plovers and human activity and a positive relationship with protection efforts aimed at reducing disturbance. Breeding and wintering climatic conditions, population productivity, and nesting habitat availability showed only weak effects. Thus, a decade-long decline in plover numbers at both seashores starting in the mid-90s reversed as the parks' visitor counts decreased and stricter protections from potential disturbance were implemented. However, the two sympatric populations of oystercatchers showed the opposite population trends from each other at the neighboring seashores, increasing only on Lookout after a hurricane improved habitat and subsequently the reproductive output. Our study suggests a strong relationship between the anthropogenic environment and the population trend of a threatened species and, simultaneously, the important role of stochastic events in shaping populations of long-lived shorebird species.
- Direct and indirect effects of nesting density on survival and breeding propensity of an endangered shorebirdCatlin, Daniel H.; Gibson, Daniel; Hunt, Kelsi L.; Friedrich, Meryl J.; Weithman, Chelsea E.; Karpanty, Sarah M.; Fraser, James D. (ESA, 2019-04-08)Density-dependent regulation is a fundamental part of ecological theory and a significant driver of animal demography often through complex feedback loops. We investigated the relationship between flood- and demographically induced fluctuations in density and the breeding propensity and survival of a pioneer species, the piping plover (plover, Charadrius melodus).We captured and marked adult and hatchling plovers on the Gavins Point Reach of the Missouri River in South Dakota and Nebraska, USA, from 2005 to 2014. In 2010 and 2011, historically high water levels and flooding inundated much of the plover’s sandbar nesting habitat on theMissouri River.We developed a Bayesian formulation of a multievent model, or a multistate survival model with state uncertainty to estimate breeding propensity simultaneously with survival. Although plovers are conspicuous, their breeding status can be difficult to establish with certainty, which necessitated the use of uncertain states.With this model, we investigated the effect of sex, habitat availability, river flow, and density (birds/ha nesting habitat) on survival of hatch year and breeding and non-breeding adult plovers. In addition, we estimated the transition rates for these age classes between breeding and nonbreeding states. Non-breeding adults (ɸAHY, n = 0.58 ± 0.06) had lower survival rates than breeding adults (ɸAHY, b = 0.80 ± 0.04), and both breeding survival and breeding propensity decreased with increasing nesting density. Not only did survival and breeding propensity decrease directly at higher nest densities, but survival also was indirectly impacted by increasing the proportion of non-breeding birds with relatively low survival. Thus, plovers were regulated through a complex set of feedback loops, acting as densities increased. Our findings underscore the intricacy of density-dependent regulation and suggest that detailed demographic studies are needed to fully understand these effects.
- Piping Plover (Charadrius melodus) demography, behavior, and movement on the Outer Banks of North CarolinaWeithman, Chelsea E. (Virginia Tech, 2019-06-10)The Piping Plover (Charadrius melodus) is an imperiled shorebird that inhabits sandy beaches along the North American Atlantic Coast. The species' decline has been attributed to habitat loss, disturbance, and predation throughout its range, although most conservation efforts have focused on increasing reproductive output during the breeding season. On the coast of North Carolina, Piping Plovers breed in areas with large amounts of recreational and tourism use. Beach recreation is known to reduce nest success, chick survival, and potentially fitness in other parts of the species' range. To reduce potential negative effects from human activities on breeding Piping Plovers, managers close areas to pedestrian and vehicle access using exclusion buffers delineated by symbolic fencing. However, the reproductive success and population size of Piping Plovers in parts of North Carolina has not appeared to increase as a result of these management strategies, despite the importance of the park and its protections to these birds on their southward migration in the fall. To understand how disturbance and attempts to mitigate it affected plover demography, we examined Piping Plover population dynamics, brood movement, and migration in North Carolina from 2015–2017. We monitored 46 nests and 19 broods, and we used a logistic exposure nest survival model and Cormack-Jolly-Seber model to estimate reproductive success. We uniquely banded 77 adults and 49 chicks to understand annual survival and fidelity rates using a live encounter mark-recapture model. During the pre-fledge period, we observed movements of Piping Plover broods, and we gathered information on their environment that may affect their behavior. We recorded 191 brood locations, collected 132 focal chick behavior samples, and 113 potential disturbance environmental samples. We used multiple linear regression to evaluate several hypotheses regarding daily and hourly brood movement rates. We also conducted 22 migratory surveys after the breeding season in 2016 at an area in Cape Hatteras National Seashore thought to be used by large numbers of south-bound migrating Piping Plovers. We used integrated Jolly-Seber and binomial count models on resighting and count data to estimate stopover superpopulation and stopover duration of migrating birds based on their breeding region of origin. Annual survival of adults from North Carolina (x ̅ = 0.69, SE = 0.07) was not different from another population on Fire Island, New York (x ̅ = 0.73, SE = 0.04), but the North Carolina population annually had low reproductive success, primarily due to low rates of chick survival. As a result, the North Carolina population was predicted to decline during the study period (λ<1 each year). Historically this population has not met the estimated rate of reproductive output needed for a stationary population (1.07 chicks per pair, SE = 0.69); therefore, it is likely the population is sustained by immigration from an unknown source. Daily (x ̅ = 71.5m/24hr) and hourly (x ̅ = 183.3m/hr) brood movements each had considerable variation (Daily: SD = 70.6, range = 0.0–327.2m; Hourly: SD = 262.3, range = 0.2–1450.9m). Chicks did not appear to move in response to the environmental factors we examined. The rate of brood movement suggests regular daylight monitoring is necessary to adequately protect unfledged broods from anthropogenic disturbance under current management methods. We found that 569 Piping Plovers (95% CI: 502–651), nearly 15% of the estimated Atlantic Coast population, stopped at a single area in Cape Hatteras National Seashore, North Carolina during fall migration. Birds stayed an average 4–7 weeks, depending on the breeding region from which they migrated, and they primarily used a relatively new protected area. These findings suggest that North Carolina is an important area for Piping Plover ecology during multiple stages of their annual cycle.
- Senescence and carryover effects of reproductive performance influence migration, condition, and breeding propensity in a small shorebirdWeithman, Chelsea E.; Gibson, Daniel; Hunt, Kelsi L.; Friedrich, Meryl J.; Fraser, James D.; Karpanty, Sarah M.; Catlin, Daniel H. (Wiley, 2017-11-15)Breeding propensity, the probability that an animal will attempt to breed each year, is perhaps the least understood demographic process influencing annual fecundity. Breeding propensity is ecologically complex, as associations among a variety of intrinsic and extrinsic factors may interact to affect an animal’s breeding decisions. Individuals that opt not to breed can be more difficult to detect than breeders, which can (1) lead to difficulty in estimation of breeding propensity, and (2) bias other demographic parameters. We studied the effects of sex, age, and population reproductive success on the survival and breeding propensity of a migratory shorebird, the piping plover (Charadrius melodus), nesting on the Missouri River. We used a robust design Barker model to estimate true survival and breeding propensity and found survival decreased as birds aged and did so more quickly for males than females. Monthly survival during the breeding season was lower than during migration or the nonbreeding season. Males were less likely to skip breeding (range: 1–17%) than females (range: 3–26%; βsex = −0.21, 95% CI: −0.38 to −0.21), and both sexes were less likely to return to the breeding grounds following a year of high reproductive success. Birds that returned in a year following relatively high population-wide reproductive output were in poorer condition than following a year with lower reproductive output. Younger adult birds and females were more likely to migrate from the breeding area earlier than older birds and males; however, all birds stayed on the breeding grounds longer when nest survival was low, presumably because of renesting attempts. Piping plovers used a variety of environmental and demographic cues to inform their reproduction, employing strategies that could maximize fitness on average. Our results support the “disposable soma” theory of aging and follow with predictions from life history theory, exhibiting the intimate connections among the core ecological concepts of senescence, carryover effects, and life history.