Browsing by Author "Westin, Benjamin Alexander"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Applications in Remote Sensing Using the Method of Ordered Multiple InteractionsWestin, Benjamin Alexander (Virginia Tech, 2013-04-24)The Method of Ordered Multiple Interactions provides a numerical solution to the integral
equations describing surface scattering which is both computationally efficient and reliably
convergent. The method has been applied in a variety of ways to solving the electromagnetic
scattering from perfectly-conducting rough surfaces. A desire to more accurately predict
the scattering from natural terrain has led to the representation of the surface material as
penetrable instead of conductive.
For this purpose, the Method of Ordered Multiple Interactions is applied to numerically
solve the electromagnetic scattering from randomly-rough dielectric surfaces. A primary
consequence of the penetrable surface material is the introduction of a pair of coupled integral equations in place of the single integral equation used to solve the problem with a perfectly conducting surface. The method is tested and analyzed by developing independent scattering solutions for canonical cases in a transform domain and by comparing results with solutions from other techniques.
The dielectric implementation of the Method of Ordered Multiple Interactions is used to solve
the electromagnetic scattering from a class of randomly-rough dielectric surfaces. This allows
for the characterization of the effect of a number of transmitter and surface parameters in the
scattering problem, observing bistatically and also specifically in the backscatter direction.
MOMI is then applied as a method to examine subsurface penetration characteristics from
a similar family of rough surfaces. Characteristics of the environment parameters and the
scattered field itself are examined, and the numerical challenges associated with observing
beneath the surface are identified and addressed.
The Method of Ordered Multiple Interactions is then incorporated as a major component of
a larger solution which computes the total scattering when a dielectric object is buried just
beneath the rough surface. This hyrid approach uses MOMI and the Method of Moments to
iteratively account for multiple interactions between the target and the dielectric interface,
enabling the study of scattering from the combined environment of a rough surface and the
embedded object, as well as the individual scattering events which combine to form the
steady-state solution.