Browsing by Author "Wilder, Frederick Durand"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- The Non-Linear Electrodynamic Coupling Between the Solar Wind, Magnetosphere and IonosphereWilder, Frederick Durand (Virginia Tech, 2011-03-29)The polar electric potential imposed on the ionosphere by coupling between the earth's magnetosphere and the solar wind has been shown to have a non-linear response to the interplanetary electric field (IEF). This dissertation presents an empirical study of this polar cap potential saturation phenomenon. First, the saturation of the reverse convection potential under northward is demonstrated using bin-averaged SuperDARN data. Then, the saturation reverse convection potential is shown to saturate at a higher value at higher solar wind plasma beta. The reverse convection flow velocity is then compared with cross-polar cap flows under southward IMF under summer, winter and equinox conditions. It is demonstrated that the reverse convection flow exhibits the opposite seasonal behavior to cross polar cap flow under southward IMF. Then, an interhemispheric case study is performed to provide an explanation for the seasonal behavior of the reverse convection potential. It is found using DMSP particle precipitation data that the reverse convection cells in the winter circulate at least partially on closed field lines. Finally, SuperDARN and DMSP data are merged to provide polar cap potential measurements for a statistical study of polar cap potential saturation under southward IMF. It is found that the extent of polar cap potential saturation increases with increasing Alfvenic Mach number, and has no significant relation to Alfven wing transmission coefficient or solar wind dynamic pressure.
- Reverse Convection Potential Saturation in the Polar IonosphereWilder, Frederick Durand (Virginia Tech, 2008-04-17)The results of an investigation of the reverse convection potentials in the day side high latitude ionosphere during periods of steady northward interplanetary magnetic field (IMF) are reported. While it has been shown that the polar cap potential in the ionosphere exhibits non-linear saturation behavior when the IMF becomes increasingly southward, it has yet to be shown whether the high latitude reverse convection cells in response to increasingly northward IMF exhibit similar behavior. Solar wind data from the ACE satellite from 1998 to 2005 was used to search for events in the solar wind when the IMF is northward and the interplanetary electric field is stable for more than 40 minutes. Bin-averaged SuperDARN convection data was used with a spherical harmonic fit applied to calculate the average potential pattern for each northward IMF bin. Results show that the reverse convection cells do, in fact, exhibit non-linear saturation behavior. The saturation potential is approximately 20 kV and is achieved when the electric coupling function reaches between 18 and 30 kV/RE.