Browsing by Author "Will, Rodney E."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- The effects of rhizosphere inundation on the growth and physiology of red maple (Acer rubrum L.) seedlings derived from wet and dry sitesWill, Rodney E. (Virginia Tech, 1992)Red maple seedlings grown from fruits collected from matched wet and dry sites from three physiographic regions of Virginia were flooded to test whether red maple seedlings derived from wet sites are affected differently by flooding than are seedlings derived from dry sites. Thirteen weeks of soil inundation on seedling growth found no interactions between flooding and maternal hydrologic condition. However, flooding significantly decreased leaf, stem, and root dry matter accumulation as well as height growth, leaf area growth, root to shoot ratio, mean relative growth rate, net assimilation rate, and mean leaf area ratio. Thirteen days of rhizosphere inundation as well as six days of recovery on seedling gas exchange determined that flooding significantly decreased photosynthetic rate and leaf conductance. A larger decrease in photosynthetic rate than in leaf conductance resulted in decreased water use efficiency and leaf limitation. There were no interactions between flooding and maternal hydrologic condition. Fourteen days of flooding decreased root aerobic respiratory capacity and root ethylene evolution, and caused shoot water potential to be less negative. As in the previous studies, no interaction between flooding and maternal hydrologic condition existed. Although rhizosphere inundation negatively affected the growth and physiology of red maple seedlings, there does not appear to exist any genetic differentiation between wet site and dry site populations affording either of the populations enhanced flood tolerance. Rather, red maple appear to have the species wide phenotypic plasticity to survive flooded conditions.
- Heterotrophic Respiration and the Divergence of Productivity and Carbon SequestrationNoormets, Asko; Bracho, Rosvel; Ward, Eric J.; Seiler, John R.; Strahm, Brian D.; Lin, Wen; McElligott, Kristin M.; Domec, Jean-Christophe; González-Benecke, Carlos; Jokela, Eric J.; Markewitz, Daniel; Meek, Cassandra; Miao, Guofang; McNulty, Steve G.; King, John S.; Samuelson, Lisa; Sun, Ge; Teskey, Robert O.; Vogel, Jason G.; Will, Rodney E.; Yang, Jinyan; Martin, Timothy A. (2021-04-16)Net primary productivity (NPP) and net ecosystem production (NEP) are often used interchangeably, as their difference, heterotrophic respiration (soil heterotrophic CO2 efflux, R-SH = NPP-NEP), is assumed a near-fixed fraction of NPP. Here, we show, using a range-wide replicated experimental study in loblolly pine (Pinus taeda) plantations that R-SH responds differently than NPP to fertilization and drought treatments, leading to the divergent responses of NPP and NEP. Across the natural range of the species, the moderate responses of NPP (+11%) and R-SH (-7%) to fertilization combined such that NEP increased nearly threefold in ambient control and 43% under drought treatment. A 13% decline in R-SH under drought led to a 26% increase in NEP while NPP was unaltered. Such drought benefit for carbon sequestration was nearly twofold in control, but disappeared under fertilization. Carbon sequestration efficiency, NEP:NPP, varied twofold among sites, and increased up to threefold under both drought and fertilization.
- A Range-Wide Experiment to Investigate Nutrient and Soil Moisture Interactions in Loblolly Pine PlantationsWill, Rodney E.; Fox, Thomas R.; Akers, Madison; Domec, Jean-Christophe; González-Benecke, Carlos; Jokela, Eric J.; Kane, Michael B.; Laviner, Marshall A.; Lokuta, Geoffrey; Markewitz, Daniel; McGuire, Mary Anne; Meek, Cassandra; Noormets, Asko; Samuelson, Lisa; Seiler, John R.; Strahm, Brian D.; Teskey, Robert O.; Vogel, Jason G.; Ward, Eric J.; West, Jason B.; Wilson, Duncan; Martin, Timothy A. (MDPI, 2015-06-03)The future climate of the southeastern USA is predicted to be warmer, drier and more variable in rainfall, which may increase drought frequency and intensity. Loblolly pine (Pinus taeda) is the most important commercial tree species in the world and is planted on ~11 million ha within its native range in the southeastern USA. A regional study was installed to evaluate effects of decreased rainfall and nutrient additions on loblolly pine plantation productivity and physiology. Four locations were established to capture the range-wide variability of soil and climate. Treatments were initiated in 2012 and consisted of a factorial combination of throughfall reduction (approximate 30% reduction) and fertilization (complete suite of nutrients). Tree and stand growth were measured at each site. Results after two growing seasons indicate a positive but variable response of fertilization on stand volume increment at all four sites and a negative effect of throughfall reduction at two sites. Data will be used to produce robust process model parameterizations useful for simulating loblolly pine growth and function under future, novel climate and management scenarios. The resulting improved models will provide support for developing management strategies to increase pine plantation productivity and carbon sequestration under a changing climate.
- Regional Assessment of Carbon Pool Response to Intensive Silvicultural Practices in Loblolly Pine PlantationsVogel, Jason G.; Bracho, Rosvel; Akers, Madison; Amateis, Ralph L.; Bacon, Allan R.; Burkhart, Harold E.; González-Benecke, Carlos; Grunwald, Sabine; Jokela, Eric J.; Kane, Michael B.; Laviner, Marshall A.; Markewitz, Daniel; Martin, Timothy A.; Meek, Cassandra; Ross, Christopher Wade; Will, Rodney E.; Fox, Thomas R. (MDPI, 2021-12-30)Tree plantations represent an important component of the global carbon (C) cycle and are expected to increase in prevalence during the 21st century. We examined how silvicultural approaches that optimize economic returns in loblolly pine (Pinus taeda L.) plantations affected the accumulation of C in pools of vegetation, detritus, and mineral soil up to 100 cm across the loblolly pine’s natural range in the southeastern United States. Comparisons of silvicultural treatments included competing vegetation or ‘weed’ control, fertilization, thinning, and varying intensities of silvicultural treatment for 106 experimental plantations and 322 plots. The average age of the sampled plantations was 17 years, and the C stored in vegetation (pine and understory) averaged 82.1 ± 3.0 (±std. error) Mg C ha−1, and 14.3 ± 0.6 Mg C ha−1 in detrital pools (soil organic layers, coarse-woody debris, and soil detritus). Mineral soil C (0–100 cm) averaged 79.8 ± 4.6 Mg C ha−1 across sites. For management effects, thinning reduced vegetation by 35.5 ± 1.2 Mg C ha−1 for all treatment combinations. Weed control and fertilization increased vegetation between 2.3 and 5.7 Mg C ha−1 across treatment combinations, with high intensity silvicultural applications producing greater vegetation C than low intensity (increase of 21.4 ± 1.7 Mg C ha−1). Detrital C pools were negatively affected by thinning where either fertilization or weed control were also applied, and were increased with management intensity. Mineral soil C did not respond to any silvicultural treatments. From these data, we constructed regression models that summarized the C accumulation in detritus and detritus + vegetation in response to independent variables commonly monitored by plantation managers (site index (SI), trees per hectare (TPH) and plantation age (AGE)). The C stored in detritus and vegetation increased on average with AGE and both models included SI and TPH. The detritus model explained less variance (adj. R2 = 0.29) than the detritus + vegetation model (adj. R2 = 0.87). A general recommendation for managers looking to maximize C storage would be to maintain a high TPH and increase SI, with SI manipulation having a greater relative effect. From the model, we predict that a plantation managed to achieve the average upper third SI (26.8) within our observations, and planted at 1500 TPH, could accumulate ~85 Mg C ha−1 by 12 years of age in detritus and vegetation, an amount greater than the region’s average mineral soil C pool. Notably, SI can be increased using both genetic and silviculture technologies.