Browsing by Author "Williams, Alicia M."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Dispersion of Ferrofluid Aggregates in Steady FlowsWilliams, Alicia M.; Vlachos, Pavlos P. (AIP Publishing, 2011-12-01)Using focused shadowgraphs, we investigate steady flows of a magnetically non-susceptible fluid interacting with ferrofluid aggregates comprised of superparamagnetic nanoparticles. The ferrofluid aggregate is retained at a specific site within the flow channel using two different applied magnetic fields. The bulk flow induces shear stresses on the aggregate, which give rise to the development of interfacial disturbances, leading to Kelvin-Helmholtz (K-H) instabilities and shedding of ferrofluid structures. Herein, the effects of bulk Reynolds number, ranging from 100 to 1000, and maximum applied magnetic fields of 1.2 x 10(5) and 2.4 x 10(5) A/m are investigated in the context of their impact on dispersion or removal of material from the core aggregate. The aggregate interaction with steady bulk flow reveals three regimes of aggregate dynamics over the span of Reynolds numbers studied: stable, transitional, and shedding. The first regime is characterized by slight aggregate stretching for low Reynolds numbers, with full aggregate retention. As the Reynolds number increases, the aggregate is in-transition between stable and shedding states. This second regime is characterized by significant initial stretching that gives way to small amplitude Kelvin-Helmholtz waves. Higher Reynolds numbers result in ferrofluid shedding, with Strouhal numbers initially between 0.2 and 0.3, wherein large vortical structures are shed from the main aggregate accompanied by precipitous decay of the accumulated ferrofluid aggregate. These behaviors are apparent for both magnetic field strengths, although the transitional Reynolds numbers are different between the cases, as are the characteristic shedding frequencies relative to the same Reynolds number. In the final step of this study, relevant parameters were extracted from the time series dispersion data to comprehensively quantify aggregate mechanics. The aggregate half-life is found to decrease as a function of the Reynolds number following a power law curve and can be scaled for different magnetic fields using the magnetic induction at the inner wall of the vessel. In addition, the decay rate of the ferrofluid is shown to be proportional to the wall shear rate. Finally, a dimensionless parameter, which scales the inertia-driven flow pressures, relative to the applied magnetic pressures, reveals a power law decay relationship with respect to the incident bulk flow. (C) 2011 American Institute of Physics. [doi:10.1063/1.3670012]
- The Hydrodynamics of Ferrofluid AggregatesWilliams, Alicia M. (Virginia Tech, 2008-08-01)Ferrofluids are comprised of subdomain particles of magnetite or iron oxide material that can become magnetized in the presence of a magnetic field. These unique liquids are being incorporated into many new applications due to the ability to control them at a distance using magnetic fields. However, although our understanding of the dynamics of ferrofluids has evolved, many aspects of ferrohydrodynamics remain largely unexplored, especially experimentally. This study is the first to characterize the stability and internal dynamics of accumulating or dispersing ferrofluid aggregates spanning the stable, low Reynolds number behavior to unstable, higher Reynolds numbers. The dynamics of ferrofluid aggregates are governed by the interaction between the bulk flow shear stresses acting to wash away the aggregate and magnetic body forces acting to retain them at the magnet location. This interaction results in different aggregate dynamics, including the stretching and coagulation of the aggregate to Kelvin-Helmholtz shedding from the aggregate interface as identified by focused shadowgraphs. Using TRDPIV, the first time-resolved flow field measurements conducted in ferrofluids reveal the presence of a three-stage process by which the ferrofluid interacts with a pulsatile bulk flow. An expanded parametric study of the effect of Reynolds number, magnetic field strength, and flow unsteadiness reveals that the increased field results can result in the lifting and wash away of the aggregate by means of vortex strengthening. In pulsatile flow, different forms of the three-stage interaction occur based on magnetic field, flow rate, and Reynolds number.
- Mixing at Low Reynolds Numbers by Vibrating Cantilevered Ionic PolymersWilliams, Alicia M. (Virginia Tech, 2007-05-11)Creating mixing at low Reynolds numbers is a non-trivial challenge that has been approached from many different perspectives, using passive or active methods. This challenge been further highlighted with the rise of microfluidics. Based on the diminutive size of these devices, the Reynolds numbers are often less than 10, but have high Peclet numbers. Therefore, creating effective mixing is non-trivial and is a topic of active research, and is of paramount importance in order to improve performance of microfluidic devices in a wide range of applications. The objective of this research was to develop a novel active device for laminar mixing. The mixing device developed herein capitalized on Nafion ionic polymers, which are a class of active materials that are thin, flexible, inexpensive, and readily deployable in an aqueous medium and offer strains up to 5% under a small (<2V) applied voltage. The effect of these deflections on an incident flow is the mixing mechanism in a laminar channel flow explored in this effort. To the author's knowledge, the high-risk effort presented herein is the first attempt to exploit ionic polymers as an active mixing device. Several different configurations of ionic polymers were tested and Digital Particle Image Velocimetry (DPIV) measurements were obtained. Resulting analysis using a quantitative mixing metric shows that using cantilevered polymers create increases mixing potential in the flow for some actuation cases. Although these differences are present, they do not appear consistently in the results. However, only a partial set of flow information was obtained from DPIV, and an improved understanding of the effect of these polymers could be developed from additional experiments. Using cantilevered ionic polymers for laminar mixing could foster the development of a new generation of efficient micromixing devices, which will improve the capabilities and effectiveness of numerous microfluidic technologies that range across biomedical, lab-on-a-chip, separation and sorting technologies and many more.