Browsing by Author "Williams, Robert Brett"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Localized Effects of Piezopolymer Devices on the Dynamics of Inflatable Space-Based StructuresWilliams, Robert Brett (Virginia Tech, 2000-08-14)Inflatable space-based devices have become popular over the past three decades, as they offer minimized launch-mass and launch-volume. Since some satellites have mirror sections over fifty feet in diameter and struts with lengths over ninety feet, inflation while in orbit has become a necessary procedure. Once inflated, these space structures are subject to two types of vibrations: those induced mechanically by guidance systems and space debris and those induced thermally from variable amounts of direct sunlight as they orbit about earth. Controlling vibrations of spaced-based structures is critical to ensuring optimal performance. The focus of this research is derived from an Air Force program to develop and model an active control system using smart materials to suppress the vibrations of inflatable communication satellites. When small piezoceramic devices are attached to an aluminum or steel structure, the effects of the piezo on the dynamic properties of the host are typically ignored. However, the inflatable satellites of interest to this project are manufactured from Kapton®, a thin, light polyimide film. Therefore, even a piezopolymer film actuator, such as PVDF, could greatly change the mass and stiffness values in the area under and around the patch, altering the dynamic behavior of the satellite. Thin-walled pressure vessel theory was employed to assess the state of stress at any location on an inflated torus. A flat, rectangular coupon was selected at a general point on the structure and modeled as a membrane. The equation of motion for this membrane with clamped edges was derived and a closed-form solution for the natural frequencies and mode shapes was presented. The Rayleigh-Ritz and finite element methods were then seen to numerically approximate the natural frequencies and mode shapes for the bare membrane with a high degree of accuracy. A passive PVDF patch was then attached to the base membrane and the equation of motion derived using an energy approach. Since a closed-form solution was not readily available, the Rayleigh-Ritz and finite element methods were again employed to obtain approximate results that agreed remarkably well. Trends in natural frequencies for various patch areas and thicknesses were explored. It was shown, that membrane theory represented the added mass of the patch but was unable to account for the added stiffness of the PVDF attachment. Traditional membrane theory was also unable to model an active PVDF patch as a sensor for out of plane vibrations, but the ability of the patch to alter the tension in the base layer was predicted.
- Nonlinear Mechanical and Actuation Characterization of Piezoceramic Fiber CompositesWilliams, Robert Brett (Virginia Tech, 1999-06-17)The use of piezoelectric ceramic materials for structural actuation is a fairly well developed practice that has found use in a wide variety of applications. However, actuators with piezoceramic fibers and interdigitated electrodes have risen to the forefront of the intelligent structures community due to their increased actuation capability. However, their fiber-reinforced construction causes them to exhibit anisotropic piezomechanical properties, and the required larger driving voltages make the inherent piezoelectric nonlinearities more prevalent. In order to effectively utilize their increased performance, the more complicated behavior of these actuators must be sufficiently characterized. The current work is intended to provide a detailed nonlinear characterization of the mechanical and piezoelectric behavior of the Macro Fiber Composite actuator, which was developed at the NASA Langley Research Center. The mechanical behavior of this planar actuation device, which is both flexible and robust, is investigated by first developing a classical lamination model to predict its short-circuit linear-elastic properties, which are then verified experimentally. The sensitivity of this model to variations in constituent material properties is also studied. Phenomenological models are then used to represent the measured nonlinear short-circuit stress-strain response to various in-plane mechanical loads. Piezoelectric characterization begins with a nonlinear actuation model whose material parameters are determined experimentally for monotonically increasing electric fields. Next, the response of the actuator to a sinusoidal electric field input is measured under various constant mechanical loads and field amplitudes. From this procedure, the common linear piezoelectric strain coefficients are presented as a function of electric field amplitude and applied stress. In addition, a Preisach model is developed that uses the collected data sets to predict the hysteretic piezoelectric behavior of the MFC. Lastly, other related topics, such as manufacturing, cure kinetics modeling and linear thermoelasticity of the Macro Fiber Composite, are covered in the appendices.