Browsing by Author "Willis, Michael J."
Now showing 1 - 20 of 25
Results Per Page
Sort Options
- The 2015 landslide and tsunami in Taan Fiord, AlaskaHigman, Bretwood; Shugar, Dan H.; Stark, Colin P.; Ekstrom, Goran; Koppes, Michele N.; Lynett, Patrick; Dufresne, Anja; Haeussler, Peter J.; Geertsema, Marten; Gulick, Sean; Mattox, Andrew; Venditti, Jeremy G.; Walton, Maureen A. L.; McCall, Naoma; Mckittrick, Erin; MacInnes, Breanyn; Bilderback, Eric L.; Tang, Hui; Willis, Michael J.; Richmond, Bruce; Reece, Robert S.; Larsen, Chris; Olson, Bjorn; Capra, James; Ayca, Aykut; Bloom, Colin; Williams, Haley; Bonno, Doug; Weiss, Robert; Keen, Adam; Skanavis, Vassilios; Loso, Michael (Springer Nature, 2018-09-06)Glacial retreat in recent decades has exposed unstable slopes and allowed deep water to extend beneath some of those slopes. Slope failure at the terminus of Tyndall Glacier on 17 October 2015 sent 180 million tons of rock into Taan Fiord, Alaska. The resulting tsunami reached elevations as high as 193 m, one of the highest tsunami runups ever documented worldwide. Precursory deformation began decades before failure, and the event left a distinct sedimentary record, showing that geologic evidence can help understand past occurrences of similar events, and might provide forewarning. The event was detected within hours through automated seismological techniques, which also estimated the mass and direction of the slide - all of which were later confirmed by remote sensing. Our field observations provide a benchmark for modeling landslide and tsunami hazards. Inverse and forward modeling can provide the framework of a detailed understanding of the geologic and hazards implications of similar events. Our results call attention to an indirect effect of climate change that is increasing the frequency and magnitude of natural hazards near glaciated mountains.
- 3D models of the leader valley using satellite & UAV imagery following the 2016 Kaikoura earthquakeZekkos, D.; Clark, M.; Willis, Michael J.; Athanasopoulos-Zekkos, A.; Manousakis, J.; Knoper, L.; Stahl, T.; Massey, C.; Archibald, G.; Greenwood, W.; Medwedeff, W. (2018-01-01)The ability to quickly, efficiently and reliably characterize changes in the landscape following an earthquake has remained a challenge for the earthquake engineering profession. The 2016 Mw7.8 Kaikoura earthquake provided a unique opportunity to document changes in topography following an earthquake on a regional scale using satellite derived high-resolution digital models. Along-track stereo satellite imagery had been collected for the pre-event topography. Satellites were tasked and collected stereo-mode post-event imagery. Both sets of images were used to create digital surface models (DSMs) of the affected area before and after the event. The procedure followed and indicative results for the Leader valley are presented with emphasis on the challenges associated with the implementation of the technique for the first time in this environment. The valley is of interest because of the variety of features it includes, i.e., the large Leader landslide, smaller landslides, stable sloping and flat ground as well as fault rupture lineaments. The open-source SETSM software is used to provide multiple DSMs. Our workflow is described and results are compared against the DSM created using Structure-from-Motion with imagery collected by Unmanned Aerial Vehicles (UAV) and aerial LIDAR. Overall, the sub-meter agreement between the DSM created using satellites and the DSM created using UAV and LIDAR datasets demonstrates viability for use in seismic studies, but features smaller than about 0.5 m are more difficult to discern.
- Accelerating changes in ice mass within Greenland, and the ice sheet's sensitivity to atmospheric forcingBevis, M.; Harig, C.; Khan, S. A.; Brown, A.; Simons, F. J.; Willis, Michael J.; Fettweis, X.; Van Den Broeke, M. R.; Madsen, F. B.; Kendrick, E.; Caccamise, D. J.; Van Dam, T.; Knudsen, P.; Nylen, T. (Proceedings of the National Academy of Sciences, 2019-01-22)From early 2003 to mid-2013, the total mass of ice in Greenland declined at a progressively increasing rate. In mid-2013, an abrupt reversal occurred, and very little net ice loss occurred in the next 12-18 months. Gravity Recovery and Climate Experiment (GRACE) and global positioning system (GPS) observations reveal that the spatial patterns of the sustained acceleration and the abrupt deceleration in mass loss are similar. The strongest accelerations tracked the phase of the North Atlantic Oscillation (NAO). The negative phase of the NAO enhances summertime warming and insolation while reducing snowfall, especially in west Greenland, driving surface mass balance (SMB) more negative, as illustrated using the regional climate model MAR. The spatial pattern of accelerating mass changes reflects the geography of NAO-driven shifts in atmospheric forcing and the ice sheet's sensitivity to that forcing. We infer that southwest Greenland will become a major future contributor to sea level rise.
- Accuracy, Efficiency, and Transferability of a Deep Learning Model for Mapping Retrogressive Thaw Slumps across the Canadian ArcticHuang, Lingcao; Lantz, Trevor C.; Fraser, Robert H.; Tiampo, Kristy F.; Willis, Michael J.; Schaefer, Kevin (MDPI, 2022-06-08)Deep learning has been used for mapping retrogressive thaw slumps and other periglacial landforms but its application is still limited to local study areas. To understand the accuracy, efficiency, and transferability of a deep learning model (i.e., DeepLabv3+) when applied to large areas or multiple regions, we conducted several experiments using training data from three different regions across the Canadian Arctic. To overcome the main challenge of transferability, we used a generative adversarial network (GAN) called CycleGAN to produce new training data in an attempt to improve transferability. The results show that (1) data augmentation can improve the accuracy of the deep learning model but does not guarantee transferability, (2) it is necessary to choose a good combination of hyper-parameters (e.g., backbones and learning rate) to achieve an optimal trade-off between accuracy and efficiency, and (3) a GAN can significantly improve the transferability if the variation between source and target is dominated by color or general texture. Our results suggest that future mapping of retrogressive thaw slumps should prioritize the collection of training data from regions where a GAN cannot improve the transferability.
- Advancing Field-Based GNSS Surveying for Validation of Remotely Sensed Water Surface Elevation ProductsPitcher, Lincoln H.; Smith, Laurence C.; Cooley, Sarah W.; Zaino, Annie; Carlson, Robert; Pettit, Joseph; Gleason, Colin J.; Minear, J. Toby; Fayne, Jessica V.; Willis, Michael J.; Hansen, Jasmine S.; Easterday, Kelly J.; Harlan, Merritt E.; Langhorst, Theodore; Topp, Simon N.; Dolan, Wayana; Kyzivat, Ethan D.; Pietroniro, Al; Marsh, Philip; Yang, Daqing; Carter, Tom; Onclin, Cuyler; Hosseini, Nasim; Wilcox, Evan; Moreira, Daniel; Berge-Nguyen, Muriel; Cretaux, Jean-Francois; Pavelsky, Tamlin M. (Frontiers, 2020-11-23)To advance monitoring of surface water resources, new remote sensing technologies including the forthcoming Surface Water and Ocean Topography (SWOT) satellite (expected launch 2022) and its experimental airborne prototype AirSWOT are being developed to repeatedly map water surface elevation (WSE) and slope (WSS) of the world’s rivers, lakes, and reservoirs. However, the vertical accuracies of these novel technologies are largely unverified; thus, standard and repeatable field procedures to validate remotely sensed WSE and WSS are needed. To that end, we designed, engineered, and operationalized a Water Surface Profiler (WaSP) system that efficiently and accurately surveys WSE and WSS in a variety of surface water environments using Global Navigation Satellite Systems (GNSS) time-averaged measurements with Precise Point Positioning corrections. Here, we present WaSP construction, deployment, and a data processing workflow. We demonstrate WaSP data collections from repeat field deployments in the North Saskatchewan River and three prairie pothole lakes near Saskatoon, Saskatchewan, Canada. We find that WaSP reproducibly measures WSE and WSS with vertical accuracies similar to standard field survey methods [WSE root mean squared difference (RMSD) ∼8 cm, WSS RMSD ∼1.3 cm/km] and that repeat WaSP deployments accurately quantify water level changes (RMSD ∼3 cm). Collectively, these results suggest that WaSP is an easily deployed, self-contained system with sufficient accuracy for validating the decimeter-level expected accuracies of SWOT and AirSWOT. We conclude by discussing the utility of WaSP for validating airborne and spaceborne WSE mappings, present 63 WaSP in situ lake WSE measurements collected in support of NASA’s Arctic-Boreal and Vulnerability Experiment, highlight routine deployment in support of the Lake Observation by Citizen Scientists and Satellites project, and explore WaSP utility for validating a novel GNSS interferometric reflectometry LArge Wave Warning System.
- Assessment of Sea Level Rise and Associated Impacts for TuvaluAdams, Kyra; Blackwood, Carmen; Cullather, Richard; Hamlington, Benjamin; Heijkoop, Eduard; Karnauskas, Kristopher; Kopp, Robert; Larour, Eric; Lee, Tong; Nerem, R. Steven; Nowicki, Sophie; Piecuch, Christopher G.; Ray, Richard; Rounce, David; Thompson, Philip; Vinogradova, Nadya; Wang, Ou; Willis, Michael J. (2023)For low-lying island nations in the Pacific Ocean, increasing sea levels pose an existential threat. One of these nations, Tuvalu, has already begun experiencing impacts driven by the combined effects of the rising ocean, storms, naturally-occurring ocean variability, and changes in other physical processes. These impacts are expected to worsen in the future, and planning and adaptation is underway in Tuvalu. In this technical report, the NASA Sea Level Change Team (NSLCT) assesses the available observations and latest scientific understanding to provide information on future sea level rise and associated impacts for Tuvalu. This report is written in support of the objectives of the Rising Nations Initiative (RNI), enabled by the UN Global Center for Climate Mobility, and serves as a scientific foundation upon which activities and plans can be based.
- Atypical landslide induces speedup, advance, and long-term slowdown of a tidewater glacierde Vries, Maximillian Van Wyk; Wickert, Andrew D.; MacGregor, Kelly R.; Rada, Camilo; Willis, Michael J. (Geological Society of America, 2022-04-26)Atmospheric and oceanic warming over the past century have driven rapid glacier thinning and retreat, destabilizing hillslopes and increasing the frequency of landslides. The impact of these landslides on glacier dynamics and resultant secondary landslide hazards are not fully understood. We investigated how a 262 ± 77 × 106 m3 landslide affected the flow of Amalia Glacier, Chilean Patagonia. Despite being one of the largest recorded landslides in a glaciated region, it emplaced little debris onto the glacier surface. Instead, it left a series of landslideperpendicular ridges, landslide-parallel fractures, and an apron of ice debris—with blocks as much as 25 m across. Our observations suggest that a deep-seated failure of the mountainside impacted the glacier flank, propagating brittle deformation through the ice and emplacing the bulk of the rock mass below the glacier. The landslide triggered a brief downglacier acceleration of Amalia Glacier followed by a slowdown of as much as 60% of the pre-landslide speed and increased suspended-sediment concentrations in the fjord. These results highlight that landslides may induce widespread and long-lasting disruptions to glacier dynamics.
- Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate changeBevis, M.; Wahr, J.; Khan, S. A.; Madsen, F. B.; Brown, A.; Willis, Michael J.; Kendrick, E.; Knudsen, P.; Box, J. E.; Van Dam, T.; Caccamise, D. J.; Johns, B.; Nylen, T.; Abbott, R.; White, S.; Miner, J.; Forsberg, R.; Zhou, H.; Wang, J.; Wilson, T.; Bromwich, D.; Francis, O. (Proceedings of the National Academy of Sciences, 2012-07-11)The Greenland GPS Network (GNET) uses the Global Positioning System (GPS) to measure the displacement of bedrock exposed near the margins of the Greenland ice sheet. The entire network is uplifting in response to past and present-day changes in ice mass. Crustal displacement is largely accounted for by an annual oscillation superimposed on a sustained trend. The oscillation is driven by earth's elastic response to seasonal variations in ice mass and air mass (i.e., atmospheric pressure). Observed vertical velocities are higher and often much higher than predicted rates of postglacial rebound (PGR), implying that uplift is usually dominated by the solid earth's instantaneous elastic response to contemporary losses in ice mass rather than PGR. Superimposed on longer-term trends, an anomalous 'pulse' of uplift accumulated at many GNET stations during an approximate six-month period in 2010. This anomalous uplift is spatially correlated with the 2010 melting day anomaly.
- Big Remote Sensing Data and Machine Learning for Assessing 21st Century Flooding and Socioeconomic ExposuresSherpa, Sonam Futi (Virginia Tech, 2023-04-28)Over the past decades, we have seen escalating costs associated with the direct socioeconomic impacts of hydrometeorological events and climate extremes such as flooding, rising sea levels due to climate change, solid earth changes, and other anthropogenic activities. With the increasing population in the era of changing climate, the number of people suffering from exposure to extreme events and sea level rise is expected to increase over the years. To develop resilience plans and mitigation strategies, hindcast exposure models, and calculate the insurance payouts, accurate maps of flooding extent and socioeconomic exposure at management-relevant resolution (102m) are needed. The growing number and continually improving coverage of Earth-observing satellites, an extensive archive of big data, and machine learning approaches have transformed the community's capacity to timely respond to flooding and water security concerns. However, in the case of flood extent mapping, most flood mapping algorithms estimate flood extent in the form of a binary map and do not provide any information on the uncertainty associated with the pixel class. Additionally, in the case of coastal inundation from sea level rise, most future projections of sea-level rise lack an accurate estimate of vertical land motion and pose a significant challenge to flood risk management plans. In this dissertation, I explore an extensive archive of available remotely sensed space-borne. synthetic aperture radar (SAR) and interferometric SAR measurements for 1) Large-scale flood extent mapping and exposure utilizing machine learning approaches and Bayesian framework to obtain probabilistic flood maps for the 2019 flood of Iran and 2018 flood of India and 2) Assessment of relative sea-level rise flooding for coastal disaster resilience in the Chesapeake Bay. Lastly, I investigate how climate change affects hydrology and cryosphere to 3) understand cryosphere-climate interaction for hazard risk and water resources management.
- 'Boundary': mapping and visualizing climatically changed landscapes at Kaskawulsh Glacier and Kluane Lake, YukonShugar, D. H.; Colorado, K. A.; Clague, J. J.; Willis, Michael J.; Best, J. L. (Taylor & Francis, 2018-06-04)This paper describes a collaboration between a visual artist and geoscientists, who together viewed the same rugged, high mountain landscape through different, yet complementary, lenses. We pair scientific mapping and historic comparative photography with a series of site-specific sculptural installations to interpret the dramatic geological changes that occurred at Kaskawulsh Glacier, Yukon, in the spring of 2016. In the summer of that year, artist K.A. Colorado accompanied geoscientists D.H. Shugar, J.J. Clague, and J.L. Best to the terminus of Kaskawulsh Glacier, as well as Kluane Lake downstream of the glacier, to document the landscape changes that occurred earlier in the year. The Boundary images were created as on-site, three-dimensional, artistic interpretations of the markedly changed boundaries that occurred as a result of climate-induced glacier retreat and the sudden subcontinental-scale reorganization of drainage. Both the scientific study conducted by the geomorphologists and the art installations created by the artist were performed simultaneously. The Boundary installation art project, together with satellite imagery and historical photographs, conveys the death of Slims River as a result of climate change.
- Brief communication: Unabated wastage of the Juneau and Stikine icefields (southeast Alaska) in the early 21st centuryBerthier, Etienne; Larsen, Christopher; Durkin, William J.; Willis, Michael J.; Pritchard, Matthew E. (Copernicus, 2018-04-27)The large Juneau and Stikine icefields (Alaska) lost mass rapidly in the second part of the 20th century. Laser altimetry, gravimetry and field measurements suggest continuing mass loss in the early 21st century. However, two recent studies based on time series of Shuttle Radar Topographic Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation models (DEMs) indicate a slowdown in mass loss after 2000. Here, the ASTER-based geodetic mass balances are recalculated carefully avoiding the use of the SRTM DEM because of the unknown penetration depth of the C-band radar signal. We find strongly negative mass balances from 2000 to 2016 (-0.68 ± 0.15 m w.e. a-1 for the Juneau Icefield and -0.83 ± 0.12 m w.e. a-1 for the Stikine Icefield), in agreement with laser altimetry, confirming that mass losses are continuing at unabated rates for both icefields. The SRTM DEM should be avoided or used very cautiously to estimate glacier volume change, especially in the North Hemisphere and over timescales of less than ∼ 20 years.
- Characterization of large tsunamigenic landslides and their effects using digital surface models: A case study from Taan Fiord, AlaskaCorsa, Brianna D.; Jacquemart, Mylene; Willis, Michael J.; Tiampo, Kristy F. (Elsevier, 2022-03-01)On 17 October 2015, a large landslide entered the marine waters of Taan Fiord, Alaska, and generated a displacement wave with a 193 m runup. The wave scoured the surrounding hillslopes of soil and vegetation and deposited significant volumes of material into the fjord, onto hillslopes on the opposite side of the fjord, and on top of Tyndall Glacier. For this study, we generated six, 2-m posting Digital Surface Models (DSMs) using DigitalGlobe/Maxar satellite imagery acquired near-annually between 2012 and 2019, and the Surface Extraction with TIN-based Search-space Minimization (SETSM) high-performance computing algorithm. We aligned the DSMs to exposed bedrock in the 01 March 2014 DSM acquisition, and then used them to characterize topographic and volumetric changes from before and after the 2015 Taan Fiord rock avalanche. We find that the landslide mobilized roughly 77. 0 ± 0.9 Mm3 of material, of which approximately 56.3 Mm3 were deposited in the fjord waters. Furthermore, we quantified an additional 27.2 ± 3.8 Mm3 of material scoured from fjord-adjacent hillslopes and deposited in the fjord waters, providing new constraints on the subaqueous deposition. This is the first time that DSMs have been used to estimate the volume of scour caused by a tsunami and the subsequent changes in extent and volume with time. Our results for the landslide and runout are consistent with field measurements published previously. This study offers improved estimates of both subaerial and subaqueous deposition for the 2015 Taan Fiord landslide and describes additional regional environmental conditions. We identify precursory motion prior to the 2015 landslide, characterize several smaller-scale landslides in the larger Taan Fiord region, delineate terminus positions and associated ice dynamics of the Tyndall Glacier, and detail seasonal changes in vegetation growth and snow melt/accumulation. This work provides important new insights into the geomorphic features and dynamics of this landslide and subsequent tsunami. The interdisciplinary applications associated with DSMs and the accuracy of the measurements presented here demonstrate that these methods are an effective tool to improve our understanding of the pre- and post-landslide processes, for monitoring areas at risk for landslides and other natural hazards, and for rapid response to catastrophic events.
- Controls on Eolian Landscape Evolution in Fractured BedrockPerkins, Jonathan P.; Finnegan, Noah J.; de Silva, Shanaka L.; Willis, Michael J. (American Geophysical Union, 2019-11-08)Wind abrasion is important for planetary landscape evolution, and wind-abraded bedrock landscapes contain many landforms that are difficult to interpret. Here we exploit a natural experiment in Chile where topographic shielding by an upwind lava flow yields diverse erosional landforms in a downwind ignimbrite. Using a 3-D topographic wind model, we find that low velocities in the wake of a lava lobe coincide with a transition from landforms reflecting fracture-parallel erosion to flow-parallel erosion. Erosion rates across these landforms vary with shear velocity and abrasion susceptibility of the windward escarpment. We hypothesize that this morphologic threshold is controlled by whether particles can be lofted in suspension and overcome topographic steering imposed by fractured bedrock blocks. Within a phase space set by Rouse and Stokes numbers, our data illustrate that wind-abraded landforms reflect a competition between the material skeleton of the landscape and the strength of the flow that shapes it.
- Direct measurements of meltwater runoff on the Greenland ice sheet surfaceSmith, Laurence C.; Yang, Kang; Pitcher, Lincoln H.; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Asa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noel, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Willis, Michael J.; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E. (National Academy of Sciences, 2017-12-05)Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland’s midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.
- Dynamic Changes at Yahtse Glacier, the Most Rapidly Advancing Tidewater Glacier in AlaskaDurkin, William J.; Bartholomaus, Timothy C.; Willis, Michael J.; Pritchard, Matthew E. (Frontiers, 2017-03-03)Since 1990, Yahtse Glacier in southern Alaska has advanced at an average rate of ∼100 myear−1 despite a negative mass balance, widespreadthinning in its accumulation area, and a low accumulation-area ratio. To better understand the interannual and seasonal changes at Yahtse and the processes driving these changes, we construct velocity and ice surface elevation time series spanning the years 1985–2016 and 2000–2014, respectively, using satellite optical and synthetic aperture radar (SAR) observations. We find contrasting seasonal dynamics above and below a steep (up to 35% slope) icefall located approximately 6 km from the terminus. Above the icefall, velocities peak in May and reach their minima in October synchronous with the development of a small embayment at the calving terminus. The up-glacier minimum speeds, embayment, and plume of turbid water that emerges from the embayment are consistent with an efficient, channelized subglacial drainage system that lowers basal water pressures and leads to focused submarine melt in the calving embayment. However, velocities near the terminus are fastest in the winter, following terminus retreat, possibly off of a terminal moraine that results in decreased backstress. Between 1996 and 2016 the terminus decelerated by ∼40%at an average rate of ∼0.4 mday−1 year−1, transitioned from tensile to compressive longitudinal strain rates, and dynamically thickened at rates of 1-6 m year−1, which we hypothesize is in response to the development and advance of a terminal moraine. The described interannual changes decay significantly upstream of the icefall, indicating that the icefall may inhibit the upstream transmission of stress perturbations. We suggest that diminished stress transmission across the icefall could allow moraine-enabled terminus advance despite mass loss in Yahtse’s upper basin. Our work highlights the importance of glacier geometry in controlling tidewater glacier re-advance, particularly in a climate favoring increasing equilibrium line altitudes.
- Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methodsPope, A.; Scambos, T. A.; Moussavi, M.; Tedesco, M.; Willis, Michael J.; Shean, D.; Grigsby, S. (Copernicus, 2016-01-15)Liquid water stored on the surface of ice sheets and glaciers impacts surface mass balance, ice dynamics, and heat transport. Multispectral remote sensing can be used to detect supraglacial lakes and estimate their depth and area. In this study, we use in situ spectral and bathymetric data to assess lake depth retrieval using the recently launched Landsat 8 Operational Land Imager (OLI). We also extend our analysis to other multispectral sensors to evaluate their performance with similar methods. Digital elevation models derived from WorldView stereo imagery (pre-lake filling and post-drainage) are used to validate spectrally derived depths, combined with a lake edge determination from imagery. The optimal supraglacial lake depth retrieval is a physically based single-band model applied to two OLI bands independently (red and panchromatic) that are then averaged together. When OLI-and WorldView-derived depths are differenced, they yield a mean and standard deviation of 0.0±1.6 m. This method is then applied to OLI data for the Sermeq Kujalleq (Jakobshavn Isbræ) region of Greenland to study the spatial and intra-seasonal variability of supraglacial lakes during summer 2014. We also give coefficients for estimating supraglacial lake depth using a similar method with other multispectral sensors.
- Estimating supraglacial lake depth in western Greenland using Landsat 8 and comparison with other multispectral methodsPope, A.; Scambos, T. A.; Moussavi, M.; Tedesco, M.; Willis, Michael J.; Shean, D.; Grigsby, S. (Copernicus, 2015-06-22)Liquid water stored on the surface of ice sheets and glaciers impacts surface mass balance, ice dynamics, and heat transport. Supraglacial lakes, therefore, play a significant role in ice sheet behavior as a surface expression of the glacial hydrological system. Multispectral remote sensing can be used to detect supraglacial lakes and estimate their depth and area. In this study, we use in situ spectral and bathymetric data to assess lake depth retrieval using the recently launched Landsat 8 Operational Land Imager (OLI). We also extend our analysis to other multispectral sensors to evaluate their performance with similar methods. Digital elevation models derived from WorldView stereo imagery (pre-lake filling and post-drainage) are used to validate spectrally derived depths, combined with a lake edge determination from imagery. The optimal supraglacial lake depth retrieval is a physically based single-band model applied to two OLI bands independently (red and panchromatic) that are then averaged together. When OLI- and WorldView-derived depths are differenced, they yield a mean and standard deviation of 0.0 ± 1.6 m. This method is then applied to OLI data for the Sermeq Kujalleq (Jakobshavn Isbrae) region of Greenland to study the spatial and intra-seasonal variability of supraglacial lakes during summer 2014. We also give coefficients for estimating supraglacial lake depth using a similar method as OLI with other multispectral sensors.
- Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheetKhan, S. A.; Sasgen, I.; Bevis, M.; Van Dam, T.; Bamber, J. L.; Willis, Michael J.; Kjær, K. H.; Wouters, B.; Helm, V.; Csatho, B.; Fleming, K.; Bjørk, A. A.; Aschwanden, A.; Knudsen, P.; Munneke, P. K. (American Association for the Advancement of Science (AAAS), 2016-09-21)Accurate quantification of the millennial-scale mass balance of the Greenland ice sheet (GrIS) and its contribution to global sea-level rise remain challenging because of sparse in situ observations in key regions. Glacial isostatic adjustment (GIA) is the ongoing response of the solid Earth to ice and ocean load changes occurring since the Last Glacial Maximum (LGM; ~21 thousand years ago) and may be used to constrain the GrIS deglaciation history. We use data from the Greenland Global Positioning System network to directly measure GIA and estimate basin-wide mass changes since the LGM. Unpredicted, large GIA uplift rates of +12 mm/year are found in southeast Greenland. These rates are due to low upper mantle viscosity in the region, from when Greenland passed over the Iceland hot spot about 40 million years ago. This region of concentrated soft rheology has a profound influence on reconstructing the deglaciation history of Greenland. We reevaluate the evolution of the GrIS since LGM and obtain a loss of 1.5-m sea-level equivalent from the northwest and southeast. These same sectors are dominating modern mass loss. We suggest that the present destabilization of these marine-based sectors may increase sea level for centuries to come. Our new deglaciation history and GIA uplift estimates suggest that studies that use the Gravity Recovery and Climate Experiment satellite mission to infer present-day changes in the GrIS may have erroneously corrected for GIA and underestimated the mass loss by about 20 gigatons/year.
- High-Resolution Finite Fault Slip Inversion of the 2019 Ridgecrest Earthquake Using 3D Finite Element ModelingBarba-Sevilla, Magali; Glasscoe, Margaret T.; Parker, Jay; Lyzenga, Gregory A.; Willis, Michael J.; Tiampo, Kristy F. (American Geophysical Union, 2022-09-14)The 2019 Ridgecrest earthquake sequence manifested as one of the most complex fault surface ruptures observed in California in modern times. The M6.4 foreshock and M7.1 mainshock occurred on an intricate network of orthogonal and sub-parallel faults resulting in observable surface displacement and surface rupture captured by geodetic data. Here we present the application of a high-resolution 3D finite element model (FEM) approach to invert for the detailed fault slip of the entire sequence using complex rheology and fused coseismic Global Navigation Satellite System (GNSS) data with Sentinel-1 differential interferometric synthetic aperture radar and pixel offset data. The heterogeneous FEM and the fused geodetic data set of pixel offsets, interferograms, and GNSS data results in our optimal inversion solution. This preferred solution is a complex, high-resolution non-planar slip model of both the M6.4 and M7.1 events that features three main regions of large slip (6.9+ m), with depths ranging from 2 to 10 km. The regions of slip are bounded by the mainshock hypocenter and the mainshock aftershocks and appear to be related to spatially varying rheological properties. We successfully reproduce a localized region of observed subsidence in the northern portion of the primary fault through the inclusion of a curved fault strand with a significant dip-slip component. The curved fault strand is the site of our maximum slip of 7.4 m at a depth of 4.2 km. The results demonstrate a robust fit from a more complete, detailed model for the entire seismogenic zone with reasonable computational cost, providing new insights into the governing rheologic and structural processes.
- A Machine Learning Approach to Flood Depth and Extent Detection Using Sentinel 1A/B Synthetic Aperture RadarTiampo, K.; Woods, C.; Huang, L.; Sharma, P.; Chen, Z.; Kar, B.; Bausch, D.; Simmons, C.; Estrada, R.; Willis, Michael J.; Glasscoe, M. (IEEE, 2021-01-01)The rising number of flooding events combined with increased urbanization is contributing to significant economic losses due to damages to structures and infrastructures. Here we present a method for producing all weather maps of flood inundation using a combination of synthetic aperture radar (SAR) remote sensing data and machine learning methods that can be used to provide information on the evolution of flood hazards to DisasterAware©, a global alerting system, that is used to disseminate flood risk information to stakeholders across the globe. While these efforts are still in development, a case study is presented for the major flood event associated with Hurricane Harvey and associated floods that impacted Houston, TX in August of 2017.