Browsing by Author "Wilson, James McKee"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Drinking from the Magic Well: Studies on Honey Bee Foraging, Recruitment, and Sublethal Stress Responses using Waggle Dance AnalysisOhlinger, Bradley David (Virginia Tech, 2023-06-05)Anthropogenic landscape changes threaten our ecologically and economically critical honey bees by decreasing the availability of quality foraging resources. Importantly, waggle dance analysis provides a versatile and relatively cost-effective tool for investigating the obstacles that honey bees face, such as habitat loss, in our changing landscapes. While this emerging tool has improved our understanding of honey bee foraging in specific landscape contexts, additional research is needed to identify broad trends that span across landscapes. For this dissertation, I used waggle dance decoding and analysis to investigate honey bee foraging, and sublethal stress responses, across three ecologically distinct landscapes in Virginia. In Chapter 1, I introduce waggle dances as a model study system for investigating honey bee foraging and sublethal stress responses by summarizing modern methodological advances in its analysis and emerging research gaps. In Chapter 2, I tested the effects of sublethal imidacloprid exposure on honey bee foraging and recruitment using a semi-field feeder experiment. In doing so, I report that honey bees decreased their foraging, but not recruitment, to an imidacloprid-laced sucrose solution, compared to a control solution. Together, these effects could potentially harm honey bee health by increasing their exposure to pesticides and decreasing their food intake. In Chapter 3, I compared the foraging distances communicated by waggle dancing nectar and pollen foragers across landscapes to explore the economic forces driving foraging to these resources. I observed higher overall and monthly nectar foraging distances compared to pollen foraging distances. Such results suggest that nectar foraging cost dynamics are driven by supply, while pollen foraging cost dynamics are driven by demand. In Chapter 4, I used waggle dance decoding to map and quantify foraging to agricultural grasslands in a mixed-use landscape. In doing so, I demonstrate that honey bees recruit to agricultural grasslands throughout the season, but that this land type was not more attractive than the broader landscape after correcting for foraging distance, which is a relevant cost that flying bees must consider. Additionally, I qualitatively observe a foraging hot spot, representing high honey bee interest, over a highly heterogenous section of the landscape. The collective results of this chapter identify agricultural grasslands as a potential management target and support the importance of landscape heterogeneity to honey bees/pollinators. In Chapter 5, I used waggle dance decoding to investigate honey bee foraging spatial patterns in the context of optimal foraging theory. In particular, I explore whether co-localized honey bee colonies forage optimally by converging on the same resource patches, or by partitioning the landscape in to distinct foraging territories. Spatial analysis revealed that the colonies widely distributed their foraging at the landscape-scale, with dances from the same and different colonies being similarly distributed, while also establishing distinct, patch-scale, colony-specific, foraging aggregations. Together, these results suggest that the honey bee foraging system produces an emergent foraging pattern that may decrease both within- and among-colony foraging competition. Finally, in Chapter 6, I place my research findings in the context of historical and current trends in honey bee behavioral ecology. Overall, my dissertation improves our understanding of honey bee foraging ecology across landscape contexts using waggle dance analysis, while demonstrating its versatility and effectiveness as a tool for ecologists.
- Exploring Aethina tumida Biology and the Impacts of Environmental Factors to Generate Novel Management StrategiesRoth, Morgan Alicia (Virginia Tech, 2022-04-14)The small hive beetle (Aethina tumida) is an invasive pest from sub-Saharan Africa that has posed increasing threats to European honey bee (Apis mellifera) colonies in the United States over the past two decades. While control has been attempted, consistently effective management strategies still not been developed. This study sought to explore novel experimental methods to better understand and use A. tumida biology to target this pest. One aspect of A. tumida biology that has emerged as potential basis for improved control is olfactory manipulation, which could be used to disrupt beetles as they seek out A. mellifera colonies. Through olfactometry and electroantennography, key volatiles in A. tumida attraction and repulsion were tested and sensitivity of A. tumida to several attractants and repellents was quantified on behavioral and physiological levels. An additional source of attractive volatiles is the A. tumida fungal symbiont Kodamaea ohmeri, which ferments larval waste and is present throughout the A. tumida lifecycle, both externally and in the GI tract. This study explored the development of feeding and soil bioassays to test the effects of several insecticides on A. tumida larvae. Feeding and injection bioassays were also used to deliver a fungicide with the goal of repressing K. ohmeri, which was expected to detrimentally impact A. tumida health. The results of this work enhance our current knowledge or A. tumida biology and provide a useful basis for development of safe and selective management A. tumida management options for the future.
- Honey Bee (Apis Mellifera) Foraging Preferences are Negatively Correlated with Alfalfa Leafcutting Bee (Megachile Rotundata) Productivity in Virginian LandscapesCampbell, Chad Dennis (Virginia Tech, 2023-06-21)Honey bees (Apis mellifera) may serve as bioindicators of habitat quality for themselves and also other insect pollinators because we can observe, decode, map, and analyze the information encoded in the waggle dance communication behavior, which allows us to know where and when bees are collecting high quality forage. Previously we measured honey bee foraging dynamics for two years (2018-2019) by waggle dance decoding at three geographically distanced sites in Virginia (Blacksburg, Winchester, Suffolk), consisting of different dominant landcover types. Here we use those data on where and when honey bees were finding profitable resources throughout the season to predict the success of a non-Apis bee in these same landscapes. Alfalfa leafcutting bees (Megachile rotundata) are managed, polylectic, solitary, cavity-nesting bees that are widely naturalized in North America. We selected M. rotundata as a model organism to validate the honey bee foraging data because they share some characteristics with other cavity nesting wild bees, but they are a tractable study system because they are commercially reared and can be purchased for study. At each of the three sites, we installed 15 nest box stations, each stocked with nesting materials and 160 M. rotundata cocoons, at varying distances and directions from the original honey bee hive locations. Most importantly, nest box stations were distributed across a range of honey bee foraging propensities, calculated as the mean foraging probability determined from our honey bee waggle dance decoding data, within a 300m buffer around each nest box. We hypothesized that honey bee foraging probability would positively correlate with M. rotundata cocoon production and survival. For two years (2021-2022) from May-August, we monitored the nest boxes and also collected data on the relative abundance of floral resources at each of the 15 stations per site. At the end of each season, we collected nesting materials and counted both M. rotundata along with incidental (i.e., non-M. rotundata) wild bee cocoons. M. rotundata cocoon productivity varied by location (log-likelihood ratio test: χ2 = 311.0, df = 2, p < 0.001), with Winchester as the most productive location (mean cocoon count (95% CI): 26.2 (23.7 to 28.9)), followed by Blacksburg (20.4 (18.2 to 22.9)), and Suffolk (4.4 (3.5 to 5.5)). The abundance of clover, both red and white, had a significant positive effect on ALCB productivity (log-likelihood ratio test: χ2 = 778.36, < 0.001). On the other hand, the number of ALCB cocoons decreased significantly with the count of Trypoxylon wasp cocoons present in the nest boxes (log-likelihood ratio test: χ2 = 54.37, < 0.001). Most importantly, we found that there was an overall negative relationship between honey bee foraging probability and alfalfa leafcutting bee cocoon productivity ((log-likelihood ratio test: χ2 = 55.42, < 0.001), where areas of higher honey bee foraging probability were associated with lower levels of alfalfa leafcutting bee productivity. This surprising result is in the opposite direction to our original hypothesis that preferred honey bee foraging areas in the landscape, as indicated by decoded waggle dance data, would be positively correlated with alfalfa leafcutting bee productivity. These data demonstrate that while honey bees may indeed act as bioindicators to other insect pollinators, this indication will likely be species and context specific and may even specify the opposite direction.
- Honey Bee Colony Resource Acquisition, Population Growth, and Pollen Foraging in Diversified Native Grass-Wildflower Grazing SystemLarcom, Raven Miranda (Virginia Tech, 2023-09-01)Compounding evidence suggests a current or impending sixth mass extinction event and pollinator crisis. While several factors contribute to pollinator declines, the most notable driver is habitat loss and degradation. Agricultural grasslands provide crucial habitat for wild and domesticated fauna, regulate water and nutrient cycles, store carbon, and maintain soil stabilization. However, conventional tall fescue pastures, which dominate the southeastern United States, limit pollinator habitat, reduce ecosystem services, and diminish cattle productivity if infected with toxic endophytes. Establishing wildflowers (WFs) and native warm season grasses (NWSGs) into tall fescue pastures has the potential to boost both pollinator ecosystem services and cattle productivity. This study monitored the differences in honey bee colony health, productivity, and pollen foraging behavior between diversified and conventional grazing pastures in south west Virginia. Chapter 1 sought to evaluate the health and productivity of hives within NWSGW+ diversified and conventional grazing systems. Chapter 2 sought to 1) determine whether honey bees used sown wildflower species in diversified pastures as significant sources of pollen, 2) compare species composition and nutritive value of pollen collected from hives within diversified and conventional pasture systems, and 3) evaluate temporal trends in pollen collection. Floral surveys revealed diversified pastures had almost 4x greater mean bloom density than conventional pastures, with over half of all blooms recorded in diversified pastures belonging to unsown species. Results from this study suggest that colonies in diversified pasture systems may have a slight advantage in population resource acquisition, population growth, and winter survival following the first year of establishment, though further research is needed. Pollen DNA metabarcoding revealed that honey bees in both diversified and conventional pasture systems have similar diets, and that sown species were foraged upon primarily in the fall. Samples collected from diversified pasture systems yielded greater pollen weight, species richness, and protein content. In conjunction with previous research, these results indicate that diversified pastures could ultimately provide a more complex nutritional support system for pollinators in grazing agroecosystems. However, individual pasture renovation may not be large enough to yield statistically significant differences in honey bee colony success.