Browsing by Author "Wood, Sami Warren"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Collaborative Path Planning and Control for Ground Agents Via Photography Collected by Unmanned Aerial VehiclesWood, Sami Warren (Virginia Tech, 2022-06-24)Natural disasters damage infrastructure and create significant obstacles to humanitarian aid efforts. Roads may become unusable, hindering or halting efforts to provide food, water, shelter, and life-saving emergency care. Finding a safe route during a disaster is especially difficult because as the disaster unfolds, the usability of roads and other infrastructure can change quickly, rendering most navigation services useless. With the proliferation of cheap cameras and unmanned aerial vehicles [UAVs], the rapid collection of aerial data after a natural disaster has become increasingly common. This data can be used to quickly appraise the damage to critical infrastructure, which can help solve navigational and logistical problems that may arise after the disaster. This work focuses on a framework in which a UAV is paired with an unmanned ground vehicle [UGV]. The UAV follows the UGV with a downward-facing camera and helps the ground vehicle navigate the flooded environment. This work makes several contributions: a simulation environment is created to allow for automated data collection in hypothetical disaster scenarios. The simulation environment uses real-world satellite and elevation data to emulate natural disasters such as floods. The environment partially simulates the dynamics of the UAV and UGV, allowing agents to ex- plore during hypothetical disasters. Several semantic image segmentation models are tested for efficacy in identifying obstacles and creating cost maps for navigation within the environ- ment, as seen by the UAV. A deep homography model incorporates temporal relations across video frames to stitch cost maps together. A weighted version of a navigation algorithm is presented to plan a path through the environment. The synthesis of these modules leads to a novel framework wherein a UAV may guide a UGV safely through a disaster area.