Browsing by Author "Wu, Dezhi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Beyond Privacy Concerns: Examining Individual Interest in Privacy in the Machine Learning EraBrown, Nicholas James (Virginia Tech, 2023-06-12)The deployment of human-augmented machine learning (ML) systems has become a recommended organizational best practice. ML systems use algorithms that rely on training data labeled by human annotators. However, human involvement in reviewing and labeling consumers' voice data to train speech recognition systems for Amazon Alexa, Microsoft Cortana, and the like has raised privacy concerns among consumers and privacy advocates. We use the enhanced APCO model as the theoretical lens to investigate how the disclosure of human involvement during the supervised machine learning process affects consumers' privacy decision making. In a scenario-based experiment with 499 participants, we present various company privacy policies to participants to examine their trust and privacy considerations, then ask them to share reasons why they would or would not opt in to share their voice data to train a companies' voice recognition software. We find that the perception of human involvement in the ML training process significantly influences participants' privacy-related concerns, which thereby mediate their decisions to share their voice data. Furthermore, we manipulate four factors of a privacy policy to operationalize various cognitive biases actively present in the minds of consumers and find that default trust and salience biases significantly affect participants' privacy decision making. Our results provide a deeper contextualized understanding of privacy-related concerns that may arise in human-augmented ML system configurations and highlight the managerial importance of considering the role of human involvement in supervised machine learning settings. Importantly, we introduce perceived human involvement as a new construct to the information privacy discourse. Although ubiquitous data collection and increased privacy breaches have elevated the reported concerns of consumers, consumers' behaviors do not always match their stated privacy concerns. Researchers refer to this as the privacy paradox, and decades of information privacy research have identified a myriad of explanations why this paradox occurs. Yet the underlying crux of the explanations presumes privacy concern to be the appropriate proxy to measure privacy attitude and compare with actual privacy behavior. Often, privacy concerns are situational and can be elicited through the setup of boundary conditions and the framing of different privacy scenarios. Drawing on the cognitive model of empowerment and interest, we propose a multidimensional privacy interest construct that captures consumers' situational and dispositional attitudes toward privacy, which can serve as a more robust measure in conditions leading to the privacy paradox. We define privacy interest as a consumer's general feeling toward reengaging particular behaviors that increase their information privacy. This construct comprises four dimensions—impact, awareness, meaningfulness, and competence—and is conceptualized as a consumer's assessment of contextual factors affecting their privacy perceptions and their global predisposition to respond to those factors. Importantly, interest was originally included in the privacy calculus but is largely absent in privacy studies and theoretical conceptualizations. Following MacKenzie et al. (2011), we developed and empirically validated a privacy interest scale. This study contributes to privacy research and practice by reconceptualizing a construct in the original privacy calculus theory and offering a renewed theoretical lens through which to view consumers' privacy attitudes and behaviors.
- Patient trust in physicians matters—Understanding the role of a mobile patient education system and patient-physician communication in improving patient adherence behavior: Field studyWu, Dezhi; Lowry, Paul Benjamin; Zhang, Dongsong; Tao, Youyou (JMIR Publications, 2022-12-31)Background: The ultimate goal of any prescribed medical therapy is to achieve desired outcomes of patient care. However, patient nonadherence has long been a major problem detrimental to patient health, and thus is a concern for all health care providers. Moreover, nonadherence is extremely costly for global medical systems because of unnecessary complications and expenses. Traditional patient education programs often serve as an intervention tool to increase patients’ self-care awareness, disease knowledge, and motivation to change patient behaviors for better adherence. Patient trust in physicians, patient-physician relationships, and quality of communication have also been identified as critical factors influencing patient adherence. However, little is known about how mobile patient education technologies help foster patient adherence. Objective: This study aimed to empirically investigate whether and how a mobile patient education system (MPES) juxtaposed with patient trust can increase patient adherence to prescribed medical therapies. Methods: This study was conducted based on a field survey of 125 patients in multiple states in the United States who have used an innovative mobile health care system for their health care education and information seeking. Partial least squares techniques were used to analyze the collected data. Results: The results revealed that patient-physician communication and the use of an MPES significantly increase patients’ trust in their physicians. Furthermore, patient trust has a prominent effect on patient attitude toward treatment adherence, which in turn influences patients’ behavioral intention and actual adherence behavior. Based on the theory of planned behavior, the results also indicated that behavioral intention, response efficacy, and self-efficacy positively influenced patients’ actual treatment adherence behavior, whereas descriptive norms and subjective norms do not play a role in this process. Conclusions: Our study is one of the first that examines the relationship between patients who actively use an MPES and their trust in their physicians. This study contributes to this context by enriching the trust literature, addressing the call to identify key patient-centered technology determinants of trust, advancing the understanding of patient adherence mechanisms, adding a new explanation of the influence of education mechanisms delivered via mobile devices on patient adherence, and confirming that the theory of planned behavior holds in this patient adherence context.