Browsing by Author "Xiao, Bei"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- CLUR: Uncertainty Estimation for Few-Shot Text Classification with Contrastive LearningHe, Jianfeng; Zhang, Xuchao; Lei, Shuo; Alhamadani, Abdulaziz; Chen, Fanglan; Xiao, Bei; Lu, Chang-Tien (ACM, 2023-08-06)Few-shot text classification has extensive application where the sample collection is expensive or complicated. When the penalty for classification errors is high, such as early threat event detection with scarce data, we expect to know “whether we should trust the classification results or reexamine them.” This paper investigates the Uncertainty Estimation for Few-shot Text Classification (UEFTC), an unexplored research area. Given limited samples, a UEFTC model predicts an uncertainty score for a classification result, which is the likelihood that the classification result is false. However, many traditional uncertainty estimation models in text classification are unsuitable for implementing a UEFTC model. These models require numerous training samples, whereas the few-shot setting in UEFTC only provides a few or just one support sample for each class in an episode. We propose Contrastive Learning from Uncertainty Relations (CLUR) to address UEFTC. CLUR can be trained with only one support sample for each class with the help of pseudo uncertainty scores. Unlike previous works that manually set the pseudo uncertainty scores, CLUR self-adaptively learns them using our proposed uncertainty relations. Specifically, we explore four model structures in CLUR to investigate the performance of three common-used contrastive learning components in UEFTC and find that two of the components are effective. Experiment results prove that CLUR outperforms six baselines on four datasets, including an improvement of 4.52% AUPR on an RCV1 dataset in a 5-way 1-shot setting. Our code and data split for UEFTC are in https: //github.com/he159ok/CLUR_UncertaintyEst_FewShot_TextCls.
- Learning with Limited Labeled Data: Techniques and ApplicationsLei, Shuo (Virginia Tech, 2023-10-11)Recent advances in large neural network-style models have demonstrated great performance in various applications, such as image generation, question answering, and audio classification. However, these deep and high-capacity models require a large amount of labeled data to function properly, rendering them inapplicable in many real-world scenarios. This dissertation focuses on the development and evaluation of advanced machine learning algorithms to solve the following research questions: (1) How to learn novel classes with limited labeled data, (2) How to adapt a large pre-trained model to the target domain if only unlabeled data is available, (3) How to boost the performance of the few-shot learning model with unlabeled data, and (4) How to utilize limited labeled data to learn new classes without the training data in the same domain. First, we study few-shot learning in text classification tasks. Meta-learning is becoming a popular approach for addressing few-shot text classification and has achieved state-of-the-art performance. However, the performance of existing approaches heavily depends on the interclass variance of the support set. To address this problem, we propose a TART network for few-shot text classification. The model enhances the generalization by transforming the class prototypes to per-class fixed reference points in task-adaptive metric spaces. In addition, we design a novel discriminative reference regularization to maximize divergence between transformed prototypes in task-adaptive metric spaces to improve performance further. In the second problem we focus on self-learning in cross-lingual transfer task. Our goal here is to develop a framework that can make the pretrained cross-lingual model continue learning the knowledge with large amount of unlabeled data. Existing self-learning methods in crosslingual transfer tasks suffer from the large number of incorrectly pseudo-labeled samples used in the training phase. We first design an uncertainty-aware cross-lingual transfer framework with pseudo-partial-labels. We also propose a novel pseudo-partial-label estimation method that considers prediction confidences and the limitation to the number of candidate classes. Next, to boost the performance of the few-shot learning model with unlabeled data, we propose a semi-supervised approach for few-shot semantic segmentation task. Existing solutions for few-shot semantic segmentation cannot easily be applied to utilize image-level weak annotations. We propose a class-prototype augmentation method to enrich the prototype representation by utilizing a few image-level annotations, achieving superior performance in one-/multi-way and weak annotation settings. We also design a robust strategy with softmasked average pooling to handle the noise in image-level annotations, which considers the prediction uncertainty and employs the task-specific threshold to mask the distraction. Finally, we study the cross-domain few-shot learning in the semantic segmentation task. Most existing few-shot segmentation methods consider a setting where base classes are drawn from the same domain as the new classes. Nevertheless, gathering enough training data for meta-learning is either unattainable or impractical in many applications. We extend few-shot semantic segmentation to a new task, called Cross-Domain Few-Shot Semantic Segmentation (CD-FSS), which aims to generalize the meta-knowledge from domains with sufficient training labels to low-resource domains. Then, we establish a new benchmark for the CD-FSS task and evaluate both representative few-shot segmentation methods and transfer learning based methods on the proposed benchmark. We then propose a novel Pyramid-AnchorTransformation based few-shot segmentation network (PATNet), in which domain-specific features are transformed into domain-agnostic ones for downstream segmentation modules to fast adapt to unseen domains.
- Uncertainty Estimation on Natural Language ProcessingHe, Jianfeng (Virginia Tech, 2024-05-15)Text plays a pivotal role in our daily lives, encompassing various forms such as social media posts, news articles, books, reports, and more. Consequently, Natural Language Processing (NLP) has garnered widespread attention. This technology empowers us to undertake tasks like text classification, entity recognition, and even crafting responses within a dialogue context. However, despite the expansive utility of NLP, it frequently necessitates a critical decision: whether to place trust in a model's predictions. To illustrate, consider a state-of-the-art (SOTA) model entrusted with diagnosing a disease or assessing the veracity of a rumor. An incorrect prediction in such scenarios can have dire consequences, impacting individuals' health or tarnishing their reputation. Consequently, it becomes imperative to establish a reliable method for evaluating the reliability of an NLP model's predictions, which is our focus-uncertainty estimation on NLP. Though many works have researched uncertainty estimation or NLP, the combination of these two domains is rare. This is because most NLP research emphasizes model prediction performance but tends to overlook the reliability of NLP model predictions. Additionally, current uncertainty estimation models may not be suitable for NLP due to the unique characteristics of NLP tasks, such as the need for more fine-grained information in named entity recognition. Therefore, this dissertation proposes novel uncertainty estimation methods for different NLP tasks by considering the NLP task's distinct characteristics. The NLP tasks are categorized into natural language understanding (NLU) and natural language generation (NLG, such as text summarization). Among the NLU tasks, the understanding could be on two views, global-view (e.g. text classification at document level) and local-view (e.g. natural language inference at sentence level and named entity recognition at token level). As a result, we research uncertainty estimation on three tasks: text classification, named entity recognition, and text summarization. Besides, because few-shot text classification has captured much attention recently, we also research the uncertainty estimation on few-shot text classification. For the first topic, uncertainty estimation on text classification, few uncertainty models focus on improving the performance of text classification where human resources are involved. In response to this gap, our research focuses on enhancing the accuracy of uncertainty scores by bolstering the confidence associated with winning scores. we introduce MSD, a novel model comprising three distinct components: 'mix-up,' 'self-ensembling,' and 'distinctiveness score.' The primary objective of MSD is to refine the accuracy of uncertainty scores by mitigating the issue of overconfidence in winning scores while simultaneously considering various categories of uncertainty. seamlessly integrate with different Deep Neural Networks. Extensive experiments with ablation settings are conducted on four real-world datasets, resulting in consistently competitive improvements. Our second topic focuses on uncertainty estimation on few-shot text classification (UEFTC), which has few or even only one available support sample for each class. UEFTC represents an underexplored research domain where, due to limited data samples, a UEFTC model predicts an uncertainty score to assess the likelihood of classification errors. However, traditional uncertainty estimation models in text classification are ill-suited for UEFTC since they demand extensive training data, while UEFTC operates in a few-shot scenario, typically providing just a few support samples, or even just one, per class. To tackle this challenge, we introduce Contrastive Learning from Uncertainty Relations (CLUR) as a solution tailored for UEFTC. CLUR exhibits the unique capability to be effectively trained with only one support sample per class, aided by pseudo uncertainty scores. A distinguishing feature of CLUR is its autonomous learning of these pseudo uncertainty scores, in contrast to previous approaches that relied on manual specification. Our investigation of CLUR encompasses four model structures, allowing us to evaluate the performance of three commonly employed contrastive learning components in the context of UEFTC. Our findings highlight the effectiveness of two of these components. Our third topic focuses on uncertainty estimation on sequential labeling. Sequential labeling involves the task of assigning labels to individual tokens in a sequence, exemplified by Named Entity Recognition (NER). Despite significant advancements in enhancing NER performance in prior research, the realm of uncertainty estimation for NER (UE-NER) remains relatively uncharted but is of paramount importance. This topic focuses on UE-NER, seeking to gauge uncertainty scores for NER predictions. Previous models for uncertainty estimation often overlook two distinctive attributes of NER: the interrelation among entities (where the learning of one entity's embedding depends on others) and the challenges posed by incorrect span predictions in entity extraction. To address these issues, we introduce the Sequential Labeling Posterior Network (SLPN), designed to estimate uncertainty scores for the extracted entities while considering uncertainty propagation from other tokens. Additionally, we have devised an evaluation methodology tailored to the specific nuances of wrong-span cases. Our fourth topic focuses on an overlooked question that persists regarding the evaluation reliability of uncertainty estimation in text summarization (UE-TS). Text summarization, a key task in natural language generation (NLG), holds significant importance, particularly in domains where inaccuracies can have serious consequences, such as healthcare. UE-TS has garnered attention due to the potential risks associated with erroneous summaries. However, the reliability of evaluating UE-TS methods raises concerns, stemming from the interdependence between uncertainty model metrics and the wide array of NLG metrics. To address these concerns, we introduce a comprehensive UE-TS benchmark incorporating twenty-six NLG metrics across four dimensions. This benchmark evaluates the uncertainty estimation capabilities of two large language models and one pre-trained language model across two datasets. Additionally, it assesses the effectiveness of fourteen common uncertainty estimation methods. Our study underscores the necessity of utilizing diverse, uncorrelated NLG metrics and uncertainty estimation techniques for a robust evaluation of UE-TS methods.