Browsing by Author "Xiao, Weidong"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of EnterococcusWang, Minqian; Firrman, Jenni; Zhang, Liqing; Arango-Argoty, Gustavo; Tomasula, Peggy; Liu, Lin Shu; Xiao, Weidong; Yam, Kit (MDPI, 2017-08-03)Apigenin is a major dietary flavonoid with many bioactivities, widely distributed in plants. Apigenin reaches the colon region intact and interacts there with the human gut microbiota, however there is little research on how apigenin affects the gut bacteria. This study investigated the effect of pure apigenin on human gut bacteria, at both the single strain and community levels. The effect of apigenin on the single gut bacteria strains Bacteroides galacturonicus, Bifidobacterium catenulatum, Lactobacillus rhamnosus GG, and Enterococcus caccae, was examined by measuring their anaerobic growth profiles. The effect of apigenin on a gut microbiota community was studied by culturing a fecal inoculum under in vitro conditions simulating the human ascending colon. 16S rRNA gene sequencing and GC-MS analysis quantified changes in the community structure. Single molecule RNA sequencing was used to reveal the response of Enterococcus caccae to apigenin. Enterococcus caccae was effectively inhibited by apigenin when cultured alone, however, the genus Enterococcus was enhanced when tested in a community setting. Single molecule RNA sequencing found that Enterococcus caccae responded to apigenin by up-regulating genes involved in DNA repair, stress response, cell wall synthesis, and protein folding. Taken together, these results demonstrate that apigenin affects both the growth and gene expression of Enterococcus caccae.
- Computational Tools for Annotating Antibiotic Resistance in Metagenomic DataArango Argoty, Gustavo Alonso (Virginia Tech, 2019-04-15)Metagenomics has become a reliable tool for the analysis of the microbial diversity and the molecular mechanisms carried out by microbial communities. By the use of next generation sequencing, metagenomic studies can generate millions of short sequencing reads that are processed by computational tools. However, with the rapid adoption of metagenomics a large amount of data has been generated. This situation requires the development of computational tools and pipelines to manage the data scalability, accessibility, and performance. In this thesis, several strategies varying from command line, web-based platforms to machine learning have been developed to address these computational challenges. Interpretation of specific information from metagenomic data is especially a challenge for environmental samples as current annotation systems only offer broad classification of microbial diversity and function. Therefore, I developed MetaStorm, a public web-service that facilitates customization of computational analysis for metagenomic data. The identification of antibiotic resistance genes (ARGs) from metagenomic data is carried out by searches against curated databases producing a high rate of false negatives. Thus, I developed DeepARG, a deep learning approach that uses the distribution of sequence alignments to predict over 30 antibiotic resistance categories with a high accuracy. Curation of ARGs is a labor intensive process where errors can be easily propagated. Thus, I developed ARGminer, a web platform dedicated to the annotation and inspection of ARGs by using crowdsourcing. Effective environmental monitoring tools should ideally capture not only ARGs, but also mobile genetic elements and indicators of co-selective forces, such as metal resistance genes. Here, I introduce NanoARG, an online computational resource that takes advantage of the long reads produced by nanopore sequencing technology to provide insights into mobility, co-selection, and pathogenicity. Sequence alignment has been one of the preferred methods for analyzing metagenomic data. However, it is slow and requires high computing resources. Therefore, I developed MetaMLP, a machine learning approach that uses a novel representation of protein sequences to perform classifications over protein functions. The method is accurate, is able to identify a larger number of hits compared to sequence alignments, and is >50 times faster than sequence alignment techniques.
- MetaStorm: A Public Resource for Customizable Metagenomics AnnotationArango-Argoty, Gustavo; Singh, Garhi; Heath, Lenwood S.; Pruden, Amy; Xiao, Weidong; Zhang, Liqing (PLOS, 2016-09-15)Metagenomics is a trending research area, calling for the need to analyze large quantities of data generated from next generation DNA sequencing technologies. The need to store, retrieve, analyze, share, and visualize such data challenges current online computational systems. Interpretationand annotation of specific information is especially a challenge for metagenomic data sets derived from environmental samples, because current annotation systems only offer broad classification of microbial diversity and function. Moreover, existing resources are not configured to readily address common questions relevant to environmental systems. Here we developed a new online user-friendly metagenomic analysis server called MetaStorm (http://bench.cs.vt.edu/MetaStorm/), which facilitates customization of computational analysis for metagenomic data sets. Users can upload their own reference databases to tailor the metagenomics annotation to focus on various taxonomic and functional gene markers of interest. MetaStormoffers two major analysis pipelines: an assembly-based annotation pipeline and the standard read annotation pipeline used by existing web servers. These pipelines can be selected individually or together. Overall, MetaStorm provides enhanced interactive visualization to allow researchers to explore and manipulate taxonomy and functional annotation at various levels of resolution.