Browsing by Author "Xu, Biao"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Synergistic China-US Ecological Research is Essential for Global Emerging Infectious Disease PreparednessSmiley Evans, Tierra; Shi, Zhengli; Boots, Michael; Liu, Wenjun; Olival, Kevin J.; Xiao, Xiangming; VandeWoude, Sue; Brown, Heidi E.; Chen, Ji-Long; Civitello, David J.; Escobar, Luis E.; Grohn, Yrjo; Li, Hongying; Lips, Karen; Liu, Qiyoung; Lu, Jiahai; Martinez-Lopez, Beatriz; Shi, Jishu; Shi, Xiaolu; Xu, Biao; Yuan, Lihong; Zhu, Guoqiang; Getz, Wayne M. (Springer, 2020-02-03)The risk of a zoonotic pandemic disease threatens hundreds of millions of people. Emerging infectious diseases also threaten livestock and wildlife populations around the world and can lead to devastating economic damages. China and the USA—due to their unparalleled resources, widespread engagement in activities driving emerging infectious diseases and national as well as geopolitical imperatives to contribute to global health security—play an essential role in our understanding of pandemic threats. Critical to efforts to mitigate risk is building upon existing investments in global capacity to develop training and research focused on the ecological factors driving infectious disease spillover from animals to humans. International cooperation, particularly between China and the USA, is essential to fully engage the resources and scientific strengths necessary to add this ecological emphasis to the pandemic preparedness strategy. Here, we review the world’s current state of emerging infectious disease preparedness, the ecological and evolutionary knowledge needed to anticipate disease emergence, the roles that China and the USA currently play as sources and solutions to mitigating risk, and the next steps needed to better protect the global community from zoonotic disease.
- Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticlesLi, Zhe; Yu, Liang; Milligan, Cory; Ma, Tao; Zhou, Lin; Cui, Yanran; Qi, Zhiyuan; Libretto, Nicole; Xu, Biao; Luo, Junwei; Shi, Enzheng; Wu, Zhenwei; Xin, Hongliang; Delgass, W. Nicholas; Miller, Jeffrey T.; Wu, Yue (2018-12-10)Supported nanoparticles are broadly employed in industrial catalytic processes, where the active sites can be tuned by metal-support interactions (MSIs). Although it is well accepted that supports can modify the chemistry of metal nanoparticles, systematic utilization of MSIs for achieving desired catalytic performance is still challenging. The developments of supports with appropriate chemical properties and identification of the resulting active sites are the main barriers. Here, we develop two-dimensional transition metal carbides (MXenes) supported platinum as efficient catalysts for light alkane dehydrogenations. Ordered Pt3Ti and surface Pt3Nb intermetallic compound nanoparticles are formed via reactive metal-support interactions on Pt/Ti3C2Tx and Pt/Nb2CTx catalysts, respectively. MXene supports modulate the nature of the active sites, making them highly selective toward C-H activation. Such exploitation of the MSIs makes MXenes promising platforms with versatile chemical reactivity and tunability for facile design of supported intermetallic nanoparticles over a wide range of compositions and structures.