Browsing by Author "Xu, Mu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Analysis of Kolmogorov flow and Rayleigh-Benard convection using persistent homologyKramar, Miroslav; Levanger, Rachel; Tithof, Jeffrey; Suri, Balachandra; Xu, Mu; Paul, Mark R.; Schatz, Michael F.; Mischaikow, Konstantin (Elsevier, 2016-11-01)We use persistent homology to build a quantitative understanding of large complex systems that are driven far-from-equilibrium. In particular, we analyze image time series of flow field patterns from numerical simulations of two important problems in fluid dynamics: Kolmogorov flow and Rayleigh–Bénard convection. For each image we compute a persistence diagram to yield a reduced description of the flow field; by applying different metrics to the space of persistence diagrams, we relate characteristic features in persistence diagrams to the geometry of the corresponding flow patterns. We also examine the dynamics of the flow patterns by a second application of persistent homology to the time series of persistence diagrams. We demonstrate that persistent homology provides an effective method both for quotienting out symmetries in families of solutions and for identifying multiscale recurrent dynamics. Our approach is quite general and it is anticipated to be applicable to a broad range of open problems exhibiting complex spatio-temporal behavior.
- Spatiotemporal Chaos in Large Systems Driven Far-From-Equilibrium: Connecting Theory with ExperimentXu, Mu (Virginia Tech, 2017-10-04)There are still many open questions regarding spatiotemporal chaos although many well developed theories exist for chaos in time. Rayleigh-B'enard convection is a paradigmatic example of spatiotemporal chaos that is also experimentally accessible. Discoveries uncovered using numerics can often be compared with experiments which can provide new physical insights. Lyapunov diagnostics can provide important information about the dynamics of small perturbations for chaotic systems. Covariant Lyapunov vectors reveal the true direction of perturbation growth and decay. The degree of hyperbolicity can also be quantified by the covariant Lyapunov vectors. To know whether a dynamical system is hyperbolic is important for the development of a theoretical understanding. In this thesis, the degree of hyperbolicity is calculated for chaotic Rayleigh-B'enard convection. For the values of the Rayleigh number explored, it is shown that the dynamics are non-hyperbolic. The spatial distribution of the covariant Lyapunov vectors is different for the different Lyapunov vectors. Localization is used to quantify this variation. The spatial localization of the covariant Lyapunov vectors has a decreasing trend as the order of the Lyapunov vector increases. The spatial localization of the covariant Lyapunov vectors are found to be related to the instantaneous Lyapunov exponents. The correlation is stronger as the order of the Lyapunov vector decreases. The covariant Lyapunov vectors are also computed using a spectral element approach. This allows an exploration of the covariant Lyapunov vectors in larger domains and for experimental conditions. The finite conductivity and finite thickness of the lateral boundaries of an experimental convection domain is also studied. Results are presented for the variation of the Nusselt number and fractal dimension for different boundary conditions. The fractal dimension changes dramatically with the variation of the finite conductivity.