Browsing by Author "Yang, Guangwei"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Comprehensive Assessment of Artificial Intelligence Tools for Driver Monitoring and Analyzing Safety Critical Events in VehiclesYang, Guangwei; Ridgeway, Christie; Miller, Andrew M.; Sarkar, Abhijit (MDPI, 2024-04-12)Human factors are a primary cause of vehicle accidents. Driver monitoring systems, utilizing a range of sensors and techniques, offer an effective method to monitor and alert drivers to minimize driver error and reduce risky driving behaviors, thus helping to avoid Safety Critical Events (SCEs) and enhance overall driving safety. Artificial Intelligence (AI) tools, in particular, have been widely investigated to improve the efficiency and accuracy of driver monitoring or analysis of SCEs. To better understand the state-of-the-art practices and potential directions for AI tools in this domain, this work is an inaugural attempt to consolidate AI-related tools from academic and industry perspectives. We include an extensive review of AI models and sensors used in driver gaze analysis, driver state monitoring, and analyzing SCEs. Furthermore, researchers identified essential AI tools, both in academia and industry, utilized for camera-based driver monitoring and SCE analysis, in the market. Recommendations for future research directions are presented based on the identified tools and the discrepancies between academia and industry in previous studies. This effort provides a valuable resource for researchers and practitioners seeking a deeper understanding of leveraging AI tools to minimize driver errors, avoid SCEs, and increase driving safety.
- Field Study of Asphalt Pavement Texture and Skid Resistance under Traffic Polishing Using 0.01 mm 3D ImagesYang, Guangwei; Chen, Kuan-Ting; Wang, Kelvin; Li, Joshua; Zou, Yiwen (MDPI, 2024-07-17)Pavement texture and skid resistance are pivotal surface features of roadway to traffic safety, especially under wet weather. Engineering interventions should be scheduled periodically to restore these features as they deteriorate over time under traffic polishing. While many studies have investigated the effects of traffic polishing on pavement texture and skid resistance through laboratory experiments, the absence of real-world traffic and environmental factors in these studies may limit the generalization of their findings. This study addresses this research gap by conducting a comprehensive field study of pavement texture and skid resistance under traffic polishing in the real world. A total of thirty pairs of pavement texture and friction data were systematically collected from three distinct locations with different levels of traffic polishing (middle, right wheel path, and edge) along an asphalt pavement in Oklahoma, USA. Data acquisition utilized a laser imaging device to reconstruct 0.01 mm 3D images to characterize pavement texture and a Dynamic Friction Tester to evaluate pavement friction at different speeds. Twenty 3D areal parameters were calculated on whole images, macrotexture images, and microtexture images to investigate the effects of traffic polishing on pavement texture from different perspectives. Then, texture parameters and testing speeds were combined to develop friction prediction models via linear and nonlinear methodologies. The results indicate that Random Forest models with identified inputs achieved excellent performance for non-contact friction evaluation. Last, the friction decrease rate was discussed to estimate the timing of future maintenance to restore skid resistance. This study provides more insights into how engineers should plan maintenance to restore pavement texture and friction considering real-world traffic polishing.
- Virtual Surface for Runway, Multi-Lane Highways, Bridge Decks at True 1mm ResolutionLi, Joshua Q.; Wang, Kelvin C. P.; Yang, Guangwei (2014-09-17)