Browsing by Author "Yang, Yuchen"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- EMI Noise Reduction Techniques for High Frequency Power ConvertersYang, Yuchen (Virginia Tech, 2018-05-21)Switch mode power supplies are widely used in different applications. High efficiency and high power density are two driving forces for power supply systems. However, high dv/dt and di/dt in switch mode power supplies will cause severe EMI noise issue. In a typical front-end converter, the EMI filter usually occupies 1/3 to 1/4 volume of total converter. Hence, reducing the EMI noise of power converter can help reduce the volume of EMI filter and improving the total power density of the converter. The EMI noise can be separated as differential mode (DM) noise and common mode (CM) noise. For off-line switch mode power supplies, DM noise is dominated by PFC converter. CM noise is a more complicated issue. It is contributed by both PFC converter and DC/DC converter. The DM noise is contributed by input current ripple. Therefore, one method to reduce DM noise is interleaving. There are three methods to reduce CM noise: symmetry, balance and shielding. The idea of symmetry concept is generating another dv/dt source to cancel the original dv/dt source. However, this method is very difficult to achieve and usually has more loss. The balance technique forms a Wheatstone bridge circuit to minimize the CM noise. However, the balance technique cannot achieve very good attenuation at high frequency due to parasitics. Shielding technique is very popular in isolated DC-DC converters to reduce CM noise. However, the previous shielding method requires precise control of parasitic capacitance and dv/dt. It is very difficult to achieve good CM noise attenuation in mass production. In this dissertation, a novel one-layer shielding method for PCB winding transformer is provided. This shielding technique can block CM noise from primary side and also cancel the CM noise from secondary side. In addition, shielding does not increase the loss of converter too much. Furthermore, this shielding technique can be applied to matrix transformer structure. For matrix transformer LLC converter, the inter-winding capacitor is very large and will cause severe CM noise problem. By adding shielding layer, CM noise has been greatly reduced. Although flyback and LLC resonant converter are used as examples to demonstrate the concept, the novel shielding technique can also be applied to other topologies that have similar transformer structure. With Wide-band-gap power devices, the switching frequency of power converter can be pushed 10 times higher than traditional Si based converters. This provides an opportunity to use PCB winding magnetics. In order to reduce the switching loss, critical conduction mode is used in PFC converter. Because of high AC current in the inductor winding, litz wire was used to build the inductor. However, with coupled inductor concept and the proposed winding structure, CRM inductor is integrate into PCB winding for the first time. Furthermore, balance technique is applied to reduce CM noise for PFC converter. With PCB winding, the balance technique has better high frequency performance. The PCB winding inductor can achieve high power density, high efficiency and automated manufacture. Traditionally, two-stage EMI filter was utilized to achieve required EMI noise attenuation. With the developed high frequency, low EMI noise converter, single-stage EMI filter can be applied. However, there are self-parasitic and mutual parasitic components to impact the filter performance on high frequency. The near-field measurement is utilized to visualize the magnetic flux near those filter components. Thus, a better filter design and layout can be achieved to have better high frequency performance.
- Method for reducing or eliminating conducted common mode noise in a transformer(United States Patent and Trademark Office, 2017-03-07)At least one shield member interposed between primary and secondary windings of a transformer and connected to the primary and/or secondary windings forms a distributed parasitic capacitance between the shield member and either the winding to which it is not connected or another shield member connected to that winding. Connections are made to the respective transformer windings such that the voltage distributions thus developed cause complementary common mode noise to be conducted in opposite directions in respective portions of the parasitic capacitance such that net common mode current can be made arbitrarily small without requiring that both sides of the distributed parasitic capacitance have complementary or equal voltage distributions. Such complementary common mode currents can be achieved by dividing opposing shield members or developing a voltage distribution in a single shield member in accordance with Faraday's Law.
- Transformer Shielding Technique for Common Mode Noise Reduction in Switch Mode Power SuppliesYang, Yuchen (Virginia Tech, 2014-07-01)Switch mode power supplies are widely used in different applications. High efficiency and high power density are two driving forces for power supply systems. However, high dv/dt and di/dt in switch mode power supplies will cause severe EMI noise issue. In a typical front-end converter, the EMI filter usually occupies 1/3 to 1/4 volume of total converter. Hence, reducing the EMI noise of power converter can help reduce the volume of EMI filter and improving the total power density of the converter. For off-line switch mode power supplies, DM noise is dominated by PFC converter. CM noise is a more complicated issue. It is contributed by both PFC converter and DC/DC converter. While many researches have focused on reducing CM noise for PFC converter, the CM noise of DC/DC converter still remains a challenge. The main objective of this thesis is provide a solution to have best CM noise reduction for DC/DC converters. The shielding concept and balance concept are combined to propose a novel balance double shielding technique. This method can have an effective CM noise reduction in the circuit level. In addition it is easy to design and implement in the real production. The balance condition is easily controlled and guarantees effective CM noise reduction in mass production. Then, a novel one-layer shielding method for PCB winding transformer is provided. This shielding technique can block CM noise from primary side and also cancel the CM noise from secondary side. In addition, shielding does not increase the loss of converter too much. Furthermore, this shielding technique can be applied to matrix transformer structure. For matrix transformer LLC converter, the inter-winding capacitor is very large and will cause severe CM noise problem. By adding shielding layer, CM noise has been greatly reduced. In addition, by modifying the secondary winding, the loss on shielding layer is minimized and experiments show that the total efficiency of converter has almost no impact. Furthermore, although this thesis uses flyback and LLC resonant converter as example to demonstrate the concept, the novel shielding technique can also be applied to other topologies that have similar transformer structure.