Browsing by Author "Yao, Xiangyu"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Critical role of deadenylation in regulating poly(A) rhythms and circadian gene expressionYao, Xiangyu; Kojima, Shihoko; Chen, Jing (2020-04)The mammalian circadian clock is deeply rooted in rhythmic regulation of gene expression. Rhythmic transcriptional control mediated by the circadian transcription factors is thought to be the main driver of mammalian circadian gene expression. However, mounting evidence has demonstrated the importance of rhythmic post-transcriptional controls, and it remains unclear how the transcriptional and post-transcriptional mechanisms collectively control rhythmic gene expression. In mouse liver, hundreds of genes were found to exhibit rhythmicity in poly(A) tail length, and the poly(A) rhythms are strongly correlated with the protein expression rhythms. To understand the role of rhythmic poly(A) regulation in circadian gene expression, we constructed a parsimonious model that depicts rhythmic control imposed upon basic mRNA expression and poly(A) regulation processes, including transcription, deadenylation, polyadenylation, and degradation. The model results reveal the rhythmicity in deadenylation as the strongest contributor to the rhythmicity in poly(A) tail length and the rhythmicity in the abundance of the mRNA subpopulation with long poly(A) tails (a rough proxy for mRNA translatability). In line with this finding, the model further shows that the experimentally observed distinct peak phases in the expression of deadenylases, regardless of other rhythmic controls, can robustly cluster the rhythmic mRNAs by their peak phases in poly(A) tail length and abundance of the long-tailed subpopulation. This provides a potential mechanism to synchronize the phases of target gene expression regulated by the same deadenylases. Our findings highlight the critical role of rhythmic deadenylation in regulating poly(A) rhythms and circadian gene expression. Author summary The biological circadian clock aligns bodily functions to the day-and-night cycle and is important for maintaining health. The rhythms in various biological processes ultimately stem from rhythmic gene expression in each single cell. Because several proteins in the mammalian core clock machinery are transcription factors, studies of mammalian circadian gene expression have focused on rhythmic transcriptional control. However, many recent studies have suggested the importance of rhythmic post-transcriptional controls. Here we use mathematical modeling to investigate how transcriptional and post-transcriptional rhythms jointly control rhythmic gene expression. We particularly focus on rhythmic post-transcriptional regulation of the mRNA poly(A) tail, a nearly universal feature of mRNAs which controls mRNA stability and translation. Our model reveals that the rhythmicities in poly(A) tail length and mRNA translatability are most strongly affected by the rhythmicity in deadenylation, the process that shortens the poly(A) tail. Particularly, the phases of poly(A) tail length and mRNA translatability are dominated by the phase of deadenylation. In light of our findings, rhythmic control of deadenylation deserves greater future attention in the field of circadian gene expression.
- Mathematical analysis of robustness of oscillations in models of the mammalian circadian clockYao, Xiangyu; Heidebrecht, Benjamin L.; Chen, Jing; Tyson, John J. (Public Library of Science, 2022-03-18)Circadian rhythms in a wide range of organisms are mediated by molecular mechanisms based on transcription-translation feedback. In this paper, we use bifurcation theory to explore mathematical models of genetic oscillators, based on Kim & Forger’s interpretation of the circadian clock in mammals. At the core of their models is a negative feedback loop whereby PER proteins (PER1 and PER2) bind to and inhibit their transcriptional activator, BMAL1. For oscillations to occur, the dissociation constant of the PER:BMAL1 complex, Kbd, must be ≤ 0.04 nM, which is orders of magnitude smaller than a reasonable expectation of 1–10 nM for this protein complex. We relax this constraint by two modifications to Kim & Forger’s ‘single negative feedback’ (SNF) model: first, by introducing a multistep reaction chain for posttranscriptional modifications of Per mRNA and posttranslational phosphorylations of PER, and second, by replacing the first-order rate law for degradation of PER in the nucleus by a Michaelis-Menten rate law. These modifications increase the maximum allowable Kbd to ~2 nM. In a third modification, we consider an alternative rate law for gene transcription to resolve an unrealistically large rate of Per2 transcription at very low concentrations of BMAL1. Additionally, we studied extensions of the SNF model to include a second negative feedback loop (involving REV-ERB) and a supplementary positive feedback loop (involving ROR). Contrary to Kim & Forger’s observations of these extended models, we find that, with our modifications, the supplementary positive feedback loop makes the oscillations more robust than observed in the models with one or two negative feedback loops. However, all three models are similarly robust when accounting for circadian rhythms (~24 h period) with Kbd ≥ 1 nM. Our results provide testable predictions for future experimental studies.
- Mathematical Modeling of Circadian Gene Expression in Mammalian CellsYao, Xiangyu (Virginia Tech, 2023-06-28)Circadian rhythms in mammals are self-sustained repeating activities driven by the circadian gene expression in cells, which is regulated at both transcriptional and posttranscriptional stages. In this work, we first used mathematical modeling to investigate the transcriptional regulation of circadian gene expression, with a focus on the mechanisms of robust genetic oscillations in the mammalian circadian core clock. Secondly, we built a coarse-grained model to study the post-transcriptional regulation of the rhythmicities of poly(A) tail length observed in hundreds of mRNAs in mouse liver. Lastly, we examined the application of Sobol indices, which is a global sensitivity analysis method, to mathematical models of biological oscillation systems, and proposed two methods tailored for the calculation of circular Sobol indices. In the first project, we modified the core negative feedback loop in a mathematical model of the mammalian genetic oscillator so that the unrealistic tight binding between the repressor PER and the activator BMAL1 is relaxed for robust oscillations. By studying the modified extended models, we found that the auxiliary positive feedback loop, rather than the auxiliary negative feedback loop, makes the oscillations more robust, yet they are similar when accounting for circadian rhythms (~24h period). In the second project, we investigated the regulation of rhythmicities in poly(A) tail length by four coupled rhythmic processes, which are transcription, deadenylation, polyadenylation, and degradation. We found that rhythmic deadenylation is the strongest contributor to the rhythmicity in poly(A) tail length and the rhythmicity in the abundance of the mRNA subpopulation with long poly(A) tails. In line with this finding, the model further showed that the experimentally observed distinct peak phases in the expression of deadenylases, regardless of other rhythmic controls, can robustly cluster the rhythmic mRNAs by their peak phases in poly(A) tail length and abundance of the long-tailed subpopulation. In the last project, we reviewed the theoretical basis of Sobol indices and identified potential problems when it is applied to mathematical models of biological oscillation systems. Based on circular statistics, we proposed two methods for the calculation of circular Sobol indices and compared their performance with the original Sobol indices in several models. We found that though the relative rankings of the contribution from parameters are the same across three methods, circular Sobol indices can better quantitatively distinguish the contribution of individual parameters. Through this work, we showed that mathematical modeling combined with sensitivity analysis can help us understand the mechanisms underlying the circadian gene expression in mammalian cells. Also, testable predictions are made for future experiments and new ideas are provided that can enable potential chronopharmacology research.