Browsing by Author "Yaremchuk, Max"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Block-Circulant Approximation of the Precision Matrix for Assimilating SWOT Altimetry DataYaremchuk, Max; Beattie, Christopher A.; Panteleev, Gleb; D’Addezio, Joseph (MDPI, 2024-05-29)The recently deployed Surface Water and Ocean Topography (SWOT) mission for the first time has observed the ocean surface at a spatial resolution of 1 km, thus giving an opportunity to directly monitor submesoscale sea surface height (SSH) variations that have a typical magnitude of a few centimeters. This progress comes at the expense of the necessity to take into account numerous uncertainties in calibration of the quality-controlled altimeter data. Of particular importance is the proper filtering of spatially correlated errors caused by the uncertainties in geometry and orientation of the on-board interferometer. These “systematic” errors dominate the SWOT error budget and are likely to have a notable signature in the SSH products available to the oceanographic community. In this study, we explore the utility of the block-circulant (BC) approximation of the SWOT precision matrix developed by the Jet Propulsion Laboratory for assessment of a mission’s accuracy, including the possible impact of the systematic errors on the assimilation of the wide-swath altimeter data into numerical models. It is found that BC approximation of the precision matrix has sufficient (90–99%) accuracy for a wide range of significant wave heights of the ocean surface, and, therefore, could potentially serve as an efficient preconditioner for data assimilation problems involving altimetry observations by space-borne interferometers. An extensive set of variational data assimilation (DA) experiments demonstrates that BC approximation provides more accurate SSH retrievals compared to approximations, assuming a spatially uncorrelated observation error field as is currently adopted in operational DA systems.
- The Effect of Spatially Correlated Errors on Sea Surface Height Retrieval from SWOT AltimetryYaremchuk, Max; Beattie, Christopher A.; Panteleev, Gleb; D’Addezio, Joseph M.; Smith, Scott (MDPI, 2023-08-31)The upcoming technology of wide-swath altimetry from space will enable monitoring the ocean surface at 4–5 times better spatial resolution and 2–3 times better accuracy than traditional nadir altimeters. This development will provide a chance to directly observe submesoscale sea surface height (SSH) variations that have a typical magnitude of a few centimeters. Taking full advantage of this opportunity requires correct treatment of the correlated SSH errors caused by uncertainties in environmental conditions beneath the satellite and in the geometry and orientation of the on-board interferometer. These observation errors are highly correlated both along and across the surface swath scanned by the satellite, and this presents a significant challenge for accurate processing. In particular, the SWOT precision matrix has off-diagonal elements that are too numerous to allow standard approaches to remain tractable. In this study, we explore the utility of a block-diagonal approximation to the SWOT precision matrix in order to reconstruct SSH variability in the region east of Greenland. An extensive set of 2dVar assimilation experiments demonstrates that the sparse approximation proposed for the precision matrix provides accurate SSH retrievals when the background-to-observation error ratio ν does not exceed 3 and significant wave height is below 2.5 m. We also quantify the range of ν and significant wave heights over which the retrieval accuracy of the exact spatially correlated SWOT error model will outperform the uncorrelated model. In particular, the estimated range is found to be substantially wider (ν<10 with significant wave heights below 8–10 m), indicating the potential benefits of further improving the accuracy of approximations for the SWOT precision matrix.