Browsing by Author "Yassue, Rafael Massahiro"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Automated Machine Learning: A Case Study of Genomic "Image-Based" Prediction in Maize HybridsGalli, Giovanni; Sabadin, Felipe; Yassue, Rafael Massahiro; Galves, Cassia; Carvalho, Humberto Fanelli; Crossa, Jose; Montesinos-Lopez, Osval Antonio; Fritsche-Neto, Roberto (Frontiers, 2022-03-07)Machine learning methods such as multilayer perceptrons (MLP) and Convolutional Neural Networks (CNN) have emerged as promising methods for genomic prediction (GP). In this context, we assess the performance of MLP and CNN on regression and classification tasks in a case study with maize hybrids. The genomic information was provided to the MLP as a relationship matrix and to the CNN as "genomic images." In the regression task, the machine learning models were compared along with GBLUP. Under the classification task, MLP and CNN were compared. In this case, the traits (plant height and grain yield) were discretized in such a way to create balanced (moderate selection intensity) and unbalanced (extreme selection intensity) datasets for further evaluations. An automatic hyperparameter search for MLP and CNN was performed, and the best models were reported. For both task types, several metrics were calculated under a validation scheme to assess the effect of the prediction method and other variables. Overall, MLP and CNN presented competitive results to GBLUP. Also, we bring new insights on automated machine learning for genomic prediction and its implications to plant breeding.
- Evaluating metabolic and genomic data for predicting grain traits under high night temperature stress in riceBi, Ye; Yassue, Rafael Massahiro; Paul, Puneet; Dhatt, Balpreet Kaur; Sandhu, Jaspreet; Do, Phuc Thi; Walia, Harkamal; Obata, Toshihiro; Morota, Gota (Oxford University Press, 2023-05)The asymmetric increase in average nighttime temperatures relative to increase in average daytime temperatures due to climate change is decreasing grain yield and quality in rice. Therefore, a better genome-level understanding of the impact of higher night temperature stress on the weight of individual grains is essential for future development of more resilient rice. We investigated the utility of metabolites obtained from grains to classify high night temperature (HNT) conditions of genotypes, and metabolites and single-nucleotide polymorphisms (SNPs) to predict grain length, width, and perimeter phenotypes using a rice diversity panel. We found that the metabolic profiles of rice genotypes alone could be used to classify control and HNT conditions with high accuracy using random forest or extreme gradient boosting. Best linear unbiased prediction and BayesC showed greater metabolic prediction performance than machine learning models for grain-size phenotypes. Metabolic prediction was most effective for grain width, resulting in the highest prediction performance. Genomic prediction performed better than metabolic prediction. Integrating metabolites and genomics simultaneously in a prediction model slightly improved prediction performance. We did not observe a difference in prediction between the control and HNT conditions. Several metabolites were identified as auxiliary phenotypes that could be used to enhance the multi-trait genomic prediction of grain-size phenotypes. Our results showed that, in addition to SNPs, metabolites collected from grains offer rich information to perform predictive analyses, including classification modeling of HNT responses and regression modeling of grain-size-related phenotypes in rice.
- Genome-wide association analysis of hyperspectral reflectance data to dissect the genetic architecture of growth-related traits in maize under plant growth-promoting bacteria inoculationYassue, Rafael Massahiro; Galli, Giovanni; Chen, Chun-Peng James; Fritsche-Neto, Roberto; Morota, Gota (Wiley, 2023-04)Plant growth-promoting bacteria (PGPB) may be of use for increasing crop yield and plant resilience to biotic and abiotic stressors. Using hyperspectral reflectance data to assess growth-related traits may shed light on the underlying genetics as such data can help assess biochemical and physiological traits. This study aimed to integrate hyperspectral reflectance data with genome-wide association analyses to examine maize growth-related traits under PGPB inoculation. A total of 360 inbred maize lines with 13,826 single nucleotide polymorphisms (SNPs) were evaluated with and without PGPB inoculation; 150 hyperspectral wavelength reflectances at 386-1021 nm and 131 hyperspectral indices were used in the analysis. Plant height, stalk diameter, and shoot dry mass were measured manually. Overall, hyperspectral signatures produced similar or higher genomic heritability estimates than those of manually measured phenotypes, and they were genetically correlated with manually measured phenotypes. Furthermore, several hyperspectral reflectance values and spectral indices were identified by genome-wide association analysis as potential markers for growth-related traits under PGPB inoculation. Eight SNPs were detected, which were commonly associated with manually measured and hyperspectral phenotypes. Different genomic regions were found for plant growth and hyperspectral phenotypes between with and without PGPB inoculation. Moreover, the hyperspectral phenotypes were associated with genes previously reported as candidates for nitrogen uptake efficiency, tolerance to abiotic stressors, and kernel size. In addition, a Shiny web application was developed to explore multiphenotype genome-wide association results interactively. Taken together, our results demonstrate the usefulness of hyperspectral-based phenotyping for studying maize growth-related traits in response to PGPB inoculation.