Browsing by Author "Yu, Dajun"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- Chemical Compositions of Edamame Beans and Valorization of Edamame ShellsYu, Dajun (Virginia Tech, 2023-01-23)Edamame is becoming more popular in the U.S. due to its high nutritional value and potential health benefits. However, more than 70% of edamame is imported from outside of the U.S. Therefore, developing elite edamame genotypes is critically desirable to increase the domestic production of edamame in the U.S. Genotype, planting location, and harvest time play essential roles in the chemical composition of edamame, which further decide edamame's nutritional value and sensory characteristics. Therefore, the first goal of this study is to comprehensively evaluate the chemical composition of edamame genotypes grown in different locations. Ten selected edamame genotypes were grown in three locations in the U.S. - Whitethorne, Virginia (VA), Little Rock, Arkansas (AR) and Painter, VA. Sugars, alanine, protein, oil, neutral detergent fiber (NDF), starch, ash, and moisture contents, were comprehensively analyzed. The results showed that location had significant effects on all chemical components of edamame with p < 0.05. Compared to Painter and Little Rock, genotypes planted in Whitethorne had higher averaged free sucrose, fructose, glucose, raffinose, stachyose, and starch contents and total sweetness. The highest crude protein and oil contents were found on edamame planted in Painter, while Little Rock produced edamame with the highest free alanine, ash, and moisture contents. Genotype significantly affected chemical compositions except for NDF and raffinose. Therefore, planting location and edamame genotype should be considered when producing elite edamame for the U.S. market. Chemical composition changes with the development of edamame; therefore, harvest time is essential for harvesting high-quality edamame. The second objective of this study is to quantify the changes in both physical and chemical properties of edamame over bean development and apply a combined spectroscopy and machine learning (ML) technique to help determine the optimal harvest time. Physical and chemical properties were analyzed for edamame harvested at R5 (beginning seed), R6 (full seed), and R7 (beginning maturity) growth stages, and the spectral reflectance (360 – 740 nm) of edamame pods was measured using a handheld spectrophotometer. The samples harvested at different stages were labeled as 'early,' 'ready,' and 'late.' At R6, pod/bean weight and pod thickness reached the peak and then stayed stable, while sugar, alanine, starch, and glycine also peaked at R6 but declined afterward. The spectra-based ML method had high accuracy (0.95) when classifying 'early' and 'late' edamame, and the accuracy was 0.87 for classifying 'early' and 'ready' edamame. These results indicated that this spectra-based ML method could determine the optimal harvest time of edamame. Food waste and loss not only lead to economic loss but also significant greenhouse gas emissions. With edamame food/snack production increasing, edamame shells, the low-value byproduct from this processing, will potentially threaten the environment. Similar to other food processing byproducts, edamame shell is rich in dietary fiber (DF). However, the high concentration of insoluble dietary fiber (IDF) limits its application as a food additive. Therefore, extraction/modification processes are needed to convert IDF to soluble dietary fiber (SDF) and improve the properties of edamame shell-derived DF. Ball milling is one of the most efficient techniques to break down biomaterials into sub-micro-level particles. Citric acid, as a natural and safe food additive, can help break down cell walls and improve the dissolution of SDF by ionizing the hydrogen ions with carboxyl groups. Therefore, the third objective of this study is to develop a process that combines ball milling and citric acid treatments to produce SDF from edamame shells. We investigated different treatment parameters, including different citric acid concentrations, treatment temperatures and time, and the application of ball milling. To determine if the combined treatment can potentially improve the properties of the produced SDFs, we characterized the physicochemical, morphological, structural, rheological, thermal, and functional properties of SDFs produced at different conditions. The results showed that the highest SDF yield (19.5%) was found when the edamame shells were pretreated by a ball mill. In addition, the combined citric acid and ball milling treatment altered several properties of the produced SDFs, including particle size, morphology, and crystallinity. Moreover, ball milling treatment led to a higher exothermic temperature peak of SDF indicating better thermal stability. All produced SDFs significantly elevated the production of short-chain fatty acids during in vitro fermentation (compared to the control fermentation) which indicated their potential benefits of promoting gut health. Overall, we demonstrated that ball-milling-assisted citric acid processing can be an effective green technique to produce SDF from edamame shells. The SDF produced from edamame shells can be regarded as a promising and novel ingredient with great potential to be used in foods.
- Chemical Compositions of Edamame Genotypes Grown in Different Locations in the USYu, Dajun; Lin, Tiantian; Sutton, Kemper L.; Lord, Nick; Carneiro, Renata C. V.; Jin, Qing; Zhang, Bo; Kuhar, Thomas P.; Rideout, Steven L.; Ross, W. Jeremy; Duncan, Susan E.; Yin, Yun; Wang, Hengjian; Huang, Haibo (2021-02-12)The consumption of edamame [Glycine max (L.) Merr.] in the US has rapidly increased due to its nutritional value and potential health benefits. In this study, 10 edamame genotypes were planted in duplicates in three different locations in the US-Whitethorne, Virginia (VA), Little Rock, Arkansas (AR), and Painter, VA. Edamame samples were harvested at the R6 stage of the bean development when beans filled 80-90% of the pod cavity. Afterward, comprehensive chemical composition analysis, including sugars, alanine, protein, oil, neutral detergent fiber (NDF), starch, ash, and moisture contents, were conducted on powdered samples using standard methods and the total sweetness was calculated based on the measured sugars and alanine contents. Significant effects of the location were observed on all chemical constituents of edamame (p < 0.05). The average performance of the genotypes was higher in Whitethorne for the contents of free sucrose (59.29 mg/g), fructose (11.42 mg/g), glucose (5.38 mg/g), raffinose (5.32 mg/g), stachyose (2.34 mg/g), total sweetness (78.63 mg/g), and starch (15.14%) when compared to Little Rock and Painter. The highest soluble alanine (2.67 mg/g), NDF (9.00%), ash (5.60%), and moisture (70.36%) contents were found on edamame planted in Little Rock while edamame planted in Painter had the highest crude protein (43.11%) and oil (20.33%) contents. Significant effects of genotype were observed on most of the chemical constituents (p < 0.05) except NDF and raffinose. Among the 10 genotypes, R13-5029 consistently had high sucrose content and total sweetness across the three locations, meanwhile it had relatively high protein and fiber contents. Overall, the results indicate that to breed better edamame genotypes in the US, both genotype and planting location should be taken into considerations.
- Conversion of Food Waste into 2,3-Butanediol via Thermophilic Fermentation: Effects of Carbohydrate Content and Nutrient SupplementationYu, Dajun; O’Hair, Joshua; Poe, Nicholas; Jin, Qing; Pinton, Sophia; He, Yanhong; Huang, Haibo (MDPI, 2022-01-10)Fermentation of food waste into 2,3-butanediol (2,3-BDO), a high-value chemical, is environmentally sustainable and an inexpensive method to recycle waste. Compared to traditional mesophilic fermentation, thermophilic fermentation can inhibit the growth of contaminant bacteria, thereby improving the success of food waste fermentation. However, the effects of sugar and nutrient concentrations in thermophilic food waste fermentations are currently unclear. Here, we investigated the effects of sugar and nutrients (yeast extract (YE) and peptone) concentrations on 2,3-BDO production from fermenting glucose and food waste media using the newly isolated thermophilic Bacillus licheniformis YNP5-TSU. When glucose media was used, fermentation was greatly affected by sugar and nutrient concentrations: excessive glucose (>70 g/L) slowed down the fermentation and low nutrients (2 g/L YE and 1 g/L peptone) caused fermentation failure. However, when food waste media were used with low nutrient addition, the bacteria consumed all 57.8 g/L sugars within 24 h and produced 24.2 g/L 2,3-BDO, equivalent to a fermentation yield of 0.42 g/g. An increase in initial sugar content (72.9 g/L) led to a higher 2,3-BDO titer of 36.7 g/L with a nearly theoretical yield of 0.47 g/g. These findings may provide fundamental knowledge for designing cost-effective food waste fermentation to produce 2,3-BDO.
- Edamame Processing: What Do I Need to Know?Carneiro, Renata; Yu, Dajun; Huang, Haibo; O’Keefe, Sean F.; Duncan, Susan (Virginia Cooperative Exension, 2020-06-18)This publication covers important aspects of edamame processing in order to inform and guide growers and food processors interested in this vegetable crop.
- Genome-wide association analysis of sucrose and alanine contents in edamame beansWang, Zhibo; Yu, Dajun; Morota, Gota; Dhakal, Kshitiz; Singer, William; Lord, Nilanka; Huang, Haibo; Chen, Pengyin; Mozzoni, Leandro; Li, Song; Zhang, Bo (Frontiers, 2023-02-03)The sucrose and Alanine (Ala) content in edamame beans significantly impacts the sweetness flavor of edamame-derived products as an important attribute to consumers' acceptance. Unlike grain-type soybeans, edamame beans are harvested as fresh beans at the R6 to R7 growth stages when beans are filled 80-90% of the pod capacity. The genetic basis of sucrose and Ala contents in fresh edamame beans may differ from those in dry seeds. To date, there is no report on the genetic basis of sucrose and Ala contents in the edamame beans. In this study, a genome-wide association study was conducted to identify single nucleotide polymorphisms (SNPs) related to sucrose and Ala levels in edamame beans using an association mapping panel of 189 edamame accessions genotyped with a SoySNP50K BeadChip. A total of 43 and 25 SNPs was associated with sucrose content and Ala content in the edamame beans, respectively. Four genes (Glyma.10g270800, Glyma.08g137500, Glyma.10g268500, and Glyma.18g193600) with known effects on the process of sucrose biosynthesis and 37 novel sucrose-related genes were characterized. Three genes (Gm17g070500, Glyma.14g201100 and Glyma.18g269600) with likely relevant effects in regulating Ala content and 22 novel Ala-related genes were identified. In addition, by summarizing the phenotypic data of edamame beans from three locations in two years, three PI accessions (PI 532469, PI 243551, and PI 407748) were selected as the high sucrose and high Ala parental lines for the perspective breeding of sweet edamame varieties. Thus, the beneficial alleles, candidate genes, and selected PI accessions identified in this study will be fundamental to develop edamame varieties with improved consumers' acceptance, and eventually promote edamame production as a specialty crop in the United States.
- Genome-Wide Association Study and Genomic Selection for Proteinogenic Methionine in Soybean SeedsSinger, William; Shea, Zachary; Yu, Dajun; Huang, Haibo; Mian, M.A. Rouf; Shang, Chao; Rosso, Maria L.; Song, Qijan J.; Zhang, Bo (Frontiers, 2022-04-25)Soybean [Glycine max (L.) Merr.] seeds have an amino acid profile that provides excellent viability as a food and feed protein source. However, low concentrations of an essential amino acid, methionine, limit the nutritional utility of soybean protein. The objectives of this study were to identify genomic associations and evaluate the potential for genomic selection (GS) for methionine content in soybean seeds. We performed a genome-wide association study (GWAS) that utilized 311 soybean accessions from maturity groups IV and V grown in three locations in 2018 and 2019. A total of 35,570 single nucleotide polymorphisms (SNPs) were used to identify genomic associations with proteinogenic methionine content that was quantified by high-performance liquid chromatography (HPLC). Across four environments, 23 novel SNPs were identified as being associated with methionine content. The strongest associations were found on chromosomes 3 (ss715586112, ss715586120, ss715586126, ss715586203, and ss715586204), 8 (ss715599541 and ss715599547) and 16 (ss715625009). Several gene models were recognized within proximity to these SNPs, such as a leucine-rich repeat protein kinase and a serine/threonine protein kinase. Identification of these linked SNPs should help soybean breeders to improve protein quality in soybean seeds. GS was evaluated using k-fold cross validation within each environment with two SNP sets, the complete 35,570 set and a subset of 248 SNPs determined to be associated with methionine through GWAS. Average prediction accuracy (r2) was highest using the SNP subset ranging from 0.45 to 0.62, which was a significant improvement from the complete set accuracy that ranged from 0.03 to 0.27. This indicated that GS utilizing a significant subset of SNPs may be a viable tool for soybean breeders seeking to improve methionine content.
- Ultrasound-assisted enzymatic extraction of protein hydrolysates from brewer's spent grainYu, Dajun (Virginia Tech, 2018-10-29)Brewer's spent grain (BSG) is the most abundant by-product of the brewing industry and its main application is limited to low-value cattle feed. Since BSG contains 20 to 25% of proteins, it has the potential to provide a new protein source to the food industry. In this research, an ultrasound-assisted enzymatic extraction was designed to extract protein hydrolysates from BSG. Original BSG and ultrasound pretreated BSG were hydrolyzed under different enzyme (Alcalase) loadings and incubation times. Centrifugation was applied to separate solubilized proteins from insoluble BSG residue. When the enzyme loading increased from 1 to 40 uL /g BSG, the solubilized proteins increased from 34% to 64.8%. The application of ultrasound further increased the solubilized proteins from 64.8% to 69.8%. Solubilized proteins from ultrasound pretreated BSG was significantly higher (p < 0.05) than that from the original BSG. Particle size distribution analysis showed that the application of ultrasound pretreatment reduced the BSG particle size from 331.2 to 215.7 um. Scanning electron microscopy images revealed that the BSG particle surface was partially ruptured by the ultrasound pretreatment. These two phenomena might have contributed to the increased protein separation efficiency with ultrasound pretreatment. The solubility (pH 1.0 to 11.0) of protein hydrolysate increased by the application of ultrasound and the ultrasound did not lead to the change of the amino acid composition of the separated protein hydrolysates. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile, the protein was degraded to peptides which had molecular weights lower than 15 kDa. The color of the separated protein hydrolysates by enzymatic hydrolysis was brighter and lighter than the original BSG. The application of ultrasound did not affect the color of the separated protein hydrolysates. Overall, the ultrasound pretreatment prior to enzymatic hydrolysis enhanced the extraction of proteins from BSG in terms of higher protein separation efficiency, lower enzyme loadings, and reduced incubation time. This study developed a novel and green method to effectively extract value-added protein hydrolysates from the low-value food processing byproducts.
- Understanding the Role of Overall Appearance and Color in Consumers' Acceptability of EdamameCarneiro, Renata; Adie, Kyle; Yu, Dajun; Beverly, Mariah; Neill, Clinton L.; Zhang, Bo; Kuhar, Thomas P.; Rideout, Steven; Reiter, Mark S.; Huang, Haibo; O'Keefe, Sean; Duncan, Susan (Frontiers, 2022-04-29)Appearance properties of vegetables can affect consumers' acceptance toward them as well as purchase intent. Hence, appearance is highly associated with quality of edamame (Glycine max (L.) Merr.), a protein-rich vegetable that is experiencing increased sales in the USA. Edamame is a high-value specialty crop and its production has been promoted in Virginia and other states in the USA where the tobacco production has decreased in the last decade. To support current efforts to develop the edamame industry in the USA, consumer and color data of 10 edamame genotypes grown in Virginia were analyzed in this follow-up study to understand the role of overall appearance and color characteristics in consumers' acceptability of edamame beans. In two consecutive years, untrained adult volunteers used 9-point hedonic scales (1 = "dislike extremely", 9 = "like extremely") to evaluate appearance and overall liking of edamame samples (cooked and shelled edamame beans) and our researchers measured the reflective color of the samples with a chroma meter. In the first year, sensory panelists also completed a choice-based conjoint analysis to determine their willingness-to-pay (WTP) for dark vs. light green edamame beans in a salad. Edamame genotypes were significantly different in appearance and overall liking (p < 0.05) and the genotype R14-16195 was the most liked overall. Hedonic scores and color were significantly affected by "year" (p < 0.05), so intentional changes between years (e.g., sample preparation) should be avoided in future studies. Consumers showed higher WTP for dark green edamame beans. Additionally, green intensity (color index) and a* color coordinate were correlated to appearance liking scores (p < 0.05), which suggests color data can support breeding selection criteria and possibly predict consumer acceptability. Employing color measurement as quality control method can help improve harvest procedures, post-harvest handling, and define edamame quality standards for the USA market.
- Utilizing Consumer Perception of Edamame to Guide New Variety DevelopmentCarneiro, Renata C. V.; Duncan, Susan E.; O'Keefe, Sean F.; Yu, Dajun; Huang, Haibo; Yin, Yun; Neill, Clinton L.; Zhang, Bo; Kuhar, Thomas P.; Rideout, Steven L.; Reiter, Mark S.; Ross, W. Jeremy; Chen, Pengyin; Gillen, Anne (2021-01-18)Consumption of edamame (vegetable soybeans) has increased significantly in the U.S. over the last 20 years. Although market demand has been increasing, most edamame is still imported from Asian countries. A team of multistate plant-breeding programs in the mid-Atlantic and Southeast U.S. has focused on developing new breeding lines that grow well in the U.S. and deliver what domestic growers, processors and consumers need and expect from their edamame. In our study, sensory evaluation was used to identify edamame genotypes and sensory attributes preferred by consumers to support breeding selection criteria. In the first year (reported as our "screening study"), 20 edamame genotypes were grown in three locations: Newport, AR, and Blacksburg and Painter, VA. In the second year (reported as our "validation study"), 10 edamame genotypes selected after our screening study were grown in Blacksburg and Painter, VA, Portageville, MO, and Stoneville, MS. In both years of research, untrained participants (adults; vegetable consumers not allergic to soy; N >= 50) used a traditional 9-point acceptability (hedonic) scale (1 = "dislike extremely"; 9 = "like extremely") to evaluate overall-liking, aroma, appearance, taste, and texture, and a 5-point scale (1 = "not sweet," 5 = "extremely sweet") to evaluate sweetness intensity. Next, participants used a check-all-that-apply (CATA) list of selected sensory terms to describe the sensory characteristics of each edamame sample. Overall acceptability of edamame genotypes was significantly different among all genotypes (p < 0.05). Samples described as "bitter," "sour" (flavor) or "starchy" (texture) were associated with lower acceptability scores while "salty" and "sweet" (flavor) were correlated with higher acceptability. Sensory data from the screening study were used to select the best genotypes by use of a defined decision process based on the consumer data. The validation study tested the selection decisions and further supported the genotype choices. Sensory evaluation is a powerful tool to direct breeders to improve market acceptability and develop new edamame genotypes. Both screening and validation studies illustrate the significant role of consumer sensory data in support of genotypes targeted for domestic (U.S.) production.
- 'VT Sweet': A vegetable soybean cultivar for commercial edamame production in the mid-Atlantic USAZhang, Bo; Lord, Nilanka; Kuhar, Thomas P.; Duncan, Susan E.; Huang, Haibo; Ross, W. Jeremy; Rideout, Steven L.; Arancibia, Ramon A.; Reiter, Mark S.; Li, Song; Chen, Pengyin; Mozzoni, Leandro; Gillen, Anne; Yin, Yun; Neill, Clinton L.; Carneiro, Renata C. V.; Yu, Dajun; Sutton, Kemper L.; Li, Xiaoying; Wang, Zhibo; Buss, Glenn (2021-10-26)Commercially viable cultivars adapted to U.S. production regions that meet consumer acceptance criteria are desperately needed by the growing domestic edamame industry. Here, we report the development and release of 'VT Sweet' (Reg. no. CV-542, PI 699062), the first vegetable soybean [Glycine max (L.) Merr.] cultivar released by Virginia Tech. VT Sweet is a late maturity group (MG) V cultivar (relative maturity 5.6, 129 d to harvest) with determinate growth habit, purple flowers, gray pubescence, tan pod wall, and yellow hila. VT Sweet has superior characteristics for edamame such as large pod size (13.9 g/10 pods; 40.4 mm long, 11.4 mm wide, and 7.6 mm thick) and low one-bean pod proportion (15%), as well as low pod pubescence density (359 hairs/2.4 cm(2)). VT Sweet also showed high overall consumer acceptability (6.0 +/- 1.7; 9 = like extremely) and favorable tolerance to native pests. When compared with the commercial edamame check 'UA Kirksey', VT Sweet showed 102% of the check yield, a higher average field emergence rate (74.9 vs. 68.1%), and comparable consumer acceptability (6.05 vs. 6.10). Therefore, VT Sweet is an ideal cultivar for growers who are interested in commercial edamame production in the mid-Atlantic region of the United States.