Browsing by Author "Yu, Liang"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotentialWang, Jun; Yu, Liang; Hu, Lin; Chen, Gang; Xin, Hongliang; Feng, Xiaofeng (Springer Nature, 2018-05-15)Electrochemical reduction of N2 to NH3 provides an alternative to the Haber−Bosch process for sustainable, distributed production of NH3 when powered by renewable electricity. However, the development of such process has been impeded by the lack of efficient electrocatalysts for N2 reduction. Here we report efficient electroreduction of N2 to NH3 on palladium nanoparticles in phosphate buffer solution under ambient conditions, which exhibits high activity and selectivity with an NH3 yield rate of ~4.5 μg mg−1Pd h−1 and a Faradaic efficiency of 8.2% at 0.1 V vs. the reversible hydrogen electrode (corresponding to a low overpotential of 56 mV), outperforming other catalysts including gold and platinum. Density functional theory calculations suggest that the unique activity of palladium originates from its balanced hydrogen evolution activity and the Grotthuss-like hydride transfer mechanism on α-palladium hydride that lowers the free energy barrier of N2 hydrogenation to *N2H, the rate-limiting step for NH3 electrosynthesis.
- Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticlesLi, Zhe; Yu, Liang; Milligan, Cory; Ma, Tao; Zhou, Lin; Cui, Yanran; Qi, Zhiyuan; Libretto, Nicole; Xu, Biao; Luo, Junwei; Shi, Enzheng; Wu, Zhenwei; Xin, Hongliang; Delgass, W. Nicholas; Miller, Jeffrey T.; Wu, Yue (2018-12-10)Supported nanoparticles are broadly employed in industrial catalytic processes, where the active sites can be tuned by metal-support interactions (MSIs). Although it is well accepted that supports can modify the chemistry of metal nanoparticles, systematic utilization of MSIs for achieving desired catalytic performance is still challenging. The developments of supports with appropriate chemical properties and identification of the resulting active sites are the main barriers. Here, we develop two-dimensional transition metal carbides (MXenes) supported platinum as efficient catalysts for light alkane dehydrogenations. Ordered Pt3Ti and surface Pt3Nb intermetallic compound nanoparticles are formed via reactive metal-support interactions on Pt/Ti3C2Tx and Pt/Nb2CTx catalysts, respectively. MXene supports modulate the nature of the active sites, making them highly selective toward C-H activation. Such exploitation of the MSIs makes MXenes promising platforms with versatile chemical reactivity and tunability for facile design of supported intermetallic nanoparticles over a wide range of compositions and structures.