Browsing by Author "Yu, Run"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Designing Coherent Interactions for Virtual RealityYu, Run (Virginia Tech, 2019-08-26)Coherence describes the validity of the internal rules that drive the behaviors of a virtual environment (VE) in presenting a credible scenario. A VR system with a high level of coherence could lead to strong plausibility illusion, which is a key component of the sense of presence. There are few existing studies centered around coherence, and they tend to put the user in a passive role when experiencing the VE without emphasizing on their active participation in the interaction. This dissertation makes up this gap by connecting the concept of coherence with fundamental 3D user interface design that focuses on the algorithms that map the user's actions to the VE's behaviors. Specifically, we inspect the design of coherent interactions for two complicated tasks, namely travel and object manipulation. For travel, we propose a family of redirected walking techniques called "narrative driven cell-based redirection", which lets the user traverse a VE that's much larger than the physical space without breaking the coherence of the scenario. For object manipulation, we propose the novel concept of physics coherence to capture whether an interface conforms to the rules of physics and design several novel techniques that try to balance between physics coherence and usability. Together, we provide some useful tools for designing coherent interactions and discuss how coherence affects user experience in VR interaction.
- Force Push: Exploring Expressive Gesture-to-Force Mappings for Remote Object Manipulation in Virtual RealityYu, Run; Bowman, Douglas A. (Frontiers Media, 2018-09-28)This paper presents Force Push, a novel gesture-based interaction technique for remote object manipulation in virtual reality (VR). Inspired by the design of magic powers in popular culture, Force Push uses intuitive hand gestures to drive physics-based movement of the object. Using a novel algorithm that dynamically maps rich features of hand gestures to the properties of the physics simulation, both coarse-grained ballisticmovements and fine-grained refinementmovements can be achieved seamlessly and naturally. An initial user study of a limited translation task showed that, although its gesture-to-force mapping is inherently harder to control than traditional position-to-position mappings, Force Push is usable even for extremely difficult tasks. Direct position-to-position control outperformed Force Push when the initial distance between the object and the target was close relative to the required accuracy; however, the gesture-based method began to show promising results when they were far away from each other. As for subjective user experience, Force Push was perceived as more natural and fun to use, even though its controllability and accuracy were thought to be inferior to direct control. This paper expands the design space of object manipulation beyond mimicking reality, and provides hints on using magical gestures and physics-based techniques for higher usability and hedonic qualities in user experience.