Browsing by Author "Yu, Wenwu"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- A Low-Rank Tensor Train Approach for Electric Vehicle Load Data Reconstruction Using Real Industrial DataSun, Bo; Xu, Yijun; Gu, Wei; Cai, Huihuang; Lu, Shuai; Mili, Lamine M.; Yu, Wenwu; Wu, Zhi (IEEE, 2024-09-30)As electric vehicles (EVs) gain popularity, their interaction with the power system cannot be overlooked. Therefore, there is a growing need for accurate EV load data to facilitate precise operation and control in power systems. However, in practice, due to the high cost of high-frequency measurement devices and limited data storage capacity, only low-resolution metered EV data are available. To address this, this paper proposed a tensor completion-based method for EV load data reconstruction. More specifically, we first reformulate the load data as high-dimensional tensors and consider unknown data to be recovered as missing entries. Subsequently, we leverage the low-rank properties of high-dimensional data to perform tensor completion. To achieve this, two optimization formulations are proposed: a nuclear norm minimization algorithm based on singular value thresholding (SVT) and a tensor rank approximation algorithm via parallel matrix factorization. Both approaches are based on the tensor train (TT) rank, thanks to its well-balanced matricization scheme. This enables us to cost-effectively reconstruct high-resolution EV data using only low-resolution measurements. Simulation results using real industrial data reveal the excellent performance of the proposed methods.