Browsing by Author "Yuan, Xiguo"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Comparative analysis of methods for detecting interacting lociChen, Li; Yu, Guoqiang; Langefeld, Carl D.; Miller, David J.; Guy, Richard T.; Raghuram, Jayaram; Yuan, Xiguo; Herrington, David M.; Wang, Yue (Biomed Central, 2011-07-05)Background: Interactions among genetic loci are believed to play an important role in disease risk. While many methods have been proposed for detecting such interactions, their relative performance remains largely unclear, mainly because different data sources, detection performance criteria, and experimental protocols were used in the papers introducing these methods and in subsequent studies. Moreover, there have been very few studies strictly focused on comparison of existing methods. Given the importance of detecting gene-gene and gene-environment interactions, a rigorous, comprehensive comparison of performance and limitations of available interaction detection methods is warranted. Results: We report a comparison of eight representative methods, of which seven were specifically designed to detect interactions among single nucleotide polymorphisms (SNPs), with the last a popular main-effect testing method used as a baseline for performance evaluation. The selected methods, multifactor dimensionality reduction (MDR), full interaction model (FIM), information gain (IG), Bayesian epistasis association mapping (BEAM), SNP harvester (SH), maximum entropy conditional probability modeling (MECPM), logistic regression with an interaction term (LRIT), and logistic regression (LR) were compared on a large number of simulated data sets, each, consistent with complex disease models, embedding multiple sets of interacting SNPs, under different interaction models. The assessment criteria included several relevant detection power measures, family-wise type I error rate, and computational complexity. There are several important results from this study. First, while some SNPs in interactions with strong effects are successfully detected, most of the methods miss many interacting SNPs at an acceptable rate of false positives. In this study, the best-performing method was MECPM. Second, the statistical significance assessment criteria, used by some of the methods to control the type I error rate, are quite conservative, thereby limiting their power and making it difficult to fairly compare them. Third, as expected, power varies for different models and as a function of penetrance, minor allele frequency, linkage disequilibrium and marginal effects. Fourth, the analytical relationships between power and these factors are derived, aiding in the interpretation of the study results. Fifth, for these methods the magnitude of the main effect influences the power of the tests. Sixth, most methods can detect some ground-truth SNPs but have modest power to detect the whole set of interacting SNPs. Conclusion: This comparison study provides new insights into the strengths and limitations of current methods for detecting interacting loci. This study, along with freely available simulation tools we provide, should help support development of improved methods. The simulation tools are available at: http://code.google.com/p/simulationtool-bmc-ms9169818735220977/downloads/list.
- Comparative Analysis of Methods for Identifying Recurrent Copy Number Alterations in CancerYuan, Xiguo; Zhang, Junying; Zhang, Shengli; Yu, Guoqiang; Wang, Yue (PLOS, 2012-12-20)Recurrent copy number alterations (CNAs) play an important role in cancer genesis. While a number of computational methods have been proposed for identifying such CNAs, their relative merits remain largely unknown in practice since very few efforts have been focused on comparative analysis of the methods. To facilitate studies of recurrent CNA identification in cancer genome, it is imperative to conduct a comprehensive comparison of performance and limitations among existing methods. In this paper, six representative methods proposed in the latest six years are compared. These include one-stage and two-stage approaches, working with raw intensity ratio data and discretized data respectively. They are based on various techniques such as kernel regression, correlation matrix diagonal segmentation, semi-parametric permutation and cyclic permutation schemes. We explore multiple criteria including type I error rate, detection power, Receiver Operating Characteristics (ROC) curve and the area under curve (AUC), and computational complexity, to evaluate performance of the methods under multiple simulation scenarios. We also characterize their abilities on applications to two real datasets obtained from cancers with lung adenocarcinoma and glioblastoma. This comparison study reveals general characteristics of the existing methods for identifying recurrent CNAs, and further provides new insights into their strengths and weaknesses. It is believed helpful to accelerate the development of novel and improved methods.
- Genome-wide identification of significant aberrations in cancer genomeYuan, Xiguo; Yu, Guoqiang; Hou, Xuchu; Shih, Ie-Ming; Clarke, Robert; Zhang, Junying; Hoffman, Eric P.; Wang, Roger R.; Zhang, Zhen; Wang, Yue (2012-07-27)Background Somatic Copy Number Alterations (CNAs) in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC), a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1) exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2) performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3) iteratively detecting Significant Copy Number Aberrations (SCAs) and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS) on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma). When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC) or tumor suppressor genes (e.g., CDKN2A/B). Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes. Open-source and platform-independent SAIC software is implemented using C++, together with R scripts for data formatting and Perl scripts for user interfacing, and it is easy to install and efficient to use. The source code and documentation are freely available at http://www.cbil.ece.vt.edu/software.htm.
- TAGCNA: A Method to Identify Significant Consensus Events of Copy Number Alterations in CancerYuan, Xiguo; Zhang, Junying; Yang, Liying; Zhang, Shengli; Chen, Baodi; Geng, Yaojun; Wang, Yue (PLOS, 2012-07-18)Somatic copy number alteration (CNA) is a common phenomenon in cancer genome. Distinguishing significant consensus events (SCEs) from random background CNAs in a set of subjects has been proven to be a valuable tool to study cancer. In order to identify SCEs with an acceptable type I error rate, better computational approaches should be developed based on reasonable statistics and null distributions. In this article, we propose a new approach named TAGCNA for identifying SCEs in somatic CNAs that may encompass cancer driver genes. TAGCNA employs a peel-off permutation scheme to generate a reasonable null distribution based on a prior step of selecting tag CNA markers from the genome being considered. We demonstrate the statistical power of TAGCNA on simulated ground truth data, and validate its applicability using two publicly available cancer datasets: lung and prostate adenocarcinoma. TAGCNA identifies SCEs that are known to be involved with proto-oncogenes (e.g. EGFR, CDK4) and tumor suppressor genes (e.g. CDKN2A, CDKN2B), and provides many additional SCEs with potential biological relevance in these data. TAGCNA can be used to analyze the significance of CNAs in various cancers. It is implemented in R and is freely available at http://tagcna.sourceforge.net/.