Browsing by Author "Yuan, Xunlai"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- The Ediacaran frondose fossil Arborea from the Shibantan limestone of South ChinaWang, Xiaopeng; Pang, Ke; Chen, Zhe; Wan, Bin; Xiao, Shuhai; Zhou, Chuanming; Yuan, Xunlai (2020-07-20)Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551-539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is dominated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g.,Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gurich, 1929, and Arborea Glaessner and Wade, 1966 are also present. Herein, we report four species of Arborea from the Shibantan assemblage, including the type species Arborea arborea (Glaessner in Glaessner and Daily, 1959) Glaessner and Wade, 1966, Arborea denticulata new species, and two unnamed species, Arboreasp. A and Arboreasp. B. Arborea arboreais the most abundant frond in the Shibantan assemblage. Arborea denticulatan. sp. resembles Arborea arborea in general morphology but differs in its fewer primary branches and lower length/width ratio of primary branches. Arboreasp. A and Arboreasp. B are fronds with a Hiemalora-type basal attachment. Sealing by microbial mats and authigenic cementation may have played an important role in the preservation of Arborea in the Shibantan assemblage. The Shibantan material of Arborea extends the stratigraphic, ecological, and taphonomic ranges of this genus. UUID: http://zoobank.org/554f21da-5f09-4891-9deb-cbc00c41e5f1
- Late Ediacaran trackways produced by bilaterian animals with paired appendagesChen, Zhe; Chen, Xiang; Zhou, Chuanming; Yuan, Xunlai; Xiao, Shuhai (AAAS, 2018-06-06)Ediacaran trace fossils provide key paleontological evidence for the evolution of early animals and their behaviors. Thus far, however, this fossil record has been limited to simple surface trails and relatively shallow burrows. We report possible trackways, preserved in association with burrows, from the terminal Ediacaran Shibantan Member (ca. 551 to ca. 541 million years ago) in the Yangtze Gorges area of South China. These trace fossils represent the earliest known trackways. They consist of two rows of imprints arranged in poorly organized series or repeated groups. These trackways may have been produced by bilaterian animals with paired appendages, although the phylum-level phylogenetic affinity of the trace makers remains unknown. It is possible that the trackways and associated burrows were produced by the same trace maker, indicating a complex behavior involving both walking and burrowing. Together, these trackways and burrows mark the arrival of a new era characterized by an increasing geobiological footprint of bilaterian animals.
- A problematic animal fossil from the early Cambrian Hetang Formation, South ChinaTang, Qing; Hu, Jie; Xie, Guwei; Yuan, Xunlai; Wan, Bin; Zhou, Cuanming; Dong, Xu; Cao, Guohua; Lieberman, Bruce S.; Leys, Sally P.; Xiao, Shuhai (Cambridge University Press, 2019-11-01)The lower-middle Hetang Formation (Cambrian Stage 2-3) deposited in slope-basinal facies in South China is well known for its preservation of the earliest articulated sponge fossils, providing an important taphonomic window into the Cambrian Explosion. However, the Hetang Formation also hosts a number of problematic animal fossils that have not been systematically described. This omission results in an incomplete picture of the Hetang biota and limits its contribution to the understanding of the early evolution of animals. Here we describe a new animal taxon, Cambrowania ovata Tang and Xiao, new genus new species, from the middle Hetang Formation in the Lantian area of southern Anhui Province, South China. Specimens are preserved as carbonaceous compressions, although some are secondarily mineralized. A comprehensive analysis using reflected light microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and micro-CT reveals that the new species is characterized by a spheroidal to fusoidal truss-like structure consisting of rafter-like crossbars, some of which are secondarily baritized and may have been internally hollow. Some specimens have aperture-like structures that are broadly similar to oscula of sponges, whereas others show evidence of a medial split reminiscent of gaping carapaces. While the phylogenetic affinity of Cambrowania ovata Tang and Xiao, n. gen. n. sp. remains problematic, we propose that it may represent carapaces of bivalved arthropods or more likely sponges in early life stages. Along with other problematic metazoan fossils such as hyolithids and sphenothallids, Cambrowania ovata Tang and Xiao, n. gen. n. sp. adds to the diversity of the sponge-dominated Hetang biota in an early Cambrian deepwater slope-basinal environment. UUID: http://zoobank.org/44de9472-7e3f-42d1-9554-7b3434df91d9
- A problematic animal fossil from the early Cambrian Hetang Formation, South China - A replyTang, Qing; Hu, Jie; Xie, Guwei; Yuan, Xunlai; Wan, Bin; Zhou, Chuanming; Dong, Xu; Cao, Guohua; Lieberman, Bruce S.; Leys, Sally P.; Xiao, Shuhai (Cambridge University Press, 2019-11-01)We recently reported Cambrowania ovata Tang and Xiao in Tang et al., 2019, from the early Cambrian Hetang Formation in South China and interpreted it as a problematic animal fossil, possibly related to either sponges or bivalved arthropods (Tang et al., 2019). Slater and Budd (2019) contested our taxonomic identification and phylogenetic interpretation; instead, they claimed that Cambrowania ovata is a large acritarch referable to morphotaxon Leiosphaeridia Eisenack, 1958, and thus is not an animal. Here we refute their criticisms, clarify the differences between Cambrowania and Leiosphaeridia and other acritarchs, and reiterate why an animal affinity for Cambrowania cannot be ruled out.
- Spiculogenesis and biomineralization in early sponge animalsTang, Qing; Wan, Bin; Yuan, Xunlai; Muscente, A. D.; Xiao, Shuhai (Springer Nature, 2019-07-26)Most sponges have biomineralized spicules. Molecular clocks indicate sponge classes diverged in the Cryogenian, but the oldest spicules are Cambrian in age. Therefore, sponges either evolved spiculogenesis long after their divergences or Precambrian spicules were not amenable to fossilization. The former hypothesis predicts independent origins of spicules among sponge classes and presence of transitional forms with weakly biomineralized spicules, but this prediction has not been tested using paleontological data. Here, we report an early Cambrian sponge that, like several other early Paleozoic sponges, had weakly biomineralized and hexactine-based siliceous spicules with large axial filaments and high organic proportions. This material, along with Ediacaran microfossils containing putative non-biomineralized axial filaments, suggests that Precambrian sponges may have had weakly biomineralized spicules or lacked them altogether, hence their poor record. This work provides a new search image for Precambrian sponge fossils, which are critical to resolving the origin of sponge spiculogenesis and biomineralization.
- Tonian carbonaceous compressions indicate that Horodyskia is one of the oldest multicellular and coenocytic macro-organismsLi, Guangjin; Chen, Lei; Pang, Ke; Tang, Qing; Wu, Chengxi; Yuan, Xunlai; Zhou, Chuanming; Xiao, Shuhai (Nature Portfolio, 2023-04)Macrofossils with unambiguous biogenic origin and predating the one-billion-year-old multicellular fossils Bangiomorpha and Proterocladus interpreted as crown-group eukaryotes are quite rare. Horodyskia is one of these few macrofossils, and it extends from the early Mesoproterozoic Era to the terminal Ediacaran Period. The biological interpretation of this enigmatic fossil, however, has been a matter of controversy since its discovery in 1982, largely because there was no evidence for the preservation of organic walls. Here we report new carbonaceous compressions of Horodyskia from the Tonian successions (similar to 950-720 Ma) in North China. The macrofossils herein with bona fide organic walls reinforce the biogenicity of Horodyskia. Aided by the new material, we reconstruct Horodyskia as a colonial organism composed of a chain of organic-walled vesicles that likely represent multinucleated (coenocytic) cells of early eukaryotes. Two species of Horodyskia are differentiated on the basis of vesicle sizes, and their co-existence in the Tonian assemblage provides a link between the Mesoproterozoic (H. moniliformis) and the Ediacaran (H. minor) species. Our study thus provides evidence that eukaryotes have acquired macroscopic size through the combination of coenocytism and colonial multicellularity at least similar to 1.48 Ga, and highlights an exceptionally long range and morphological stasis of this Proterozoic macrofossils.