Browsing by Author "Zhang, Fei"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Adsorption of Small Molecules in Advanced Material SystemsZhang, Fei (Virginia Tech, 2019-06-10)Adsorption is a ubiquitous phenomenon that plays key roles in numerous applications including molecule separation, energy storage, catalysis, and lubrications. Since adsorption is sensitive to molecular details of adsorbate molecule and adsorbent materials, it is often difficult to describe theoretically. Molecular modeling capable of resolving physical processes at atomistic scales is an effective method for studying adsorption. In this dissertation, the adsorption of small molecules in three emerging materials systems: porous liquids, room-temperature ionic liquids, and atomically sharp electrodes immersed in aqueous electrolytes, are investigated to understand the physics of adsorption as well as to help design and optimize these materials systems. Thermodynamics and kinetics of gas storage in the recently synthesized porous liquids (crown-ether-substituted cage molecules dispersed in an organic solvent) were studied. Gas molecules were found to store differently in cage molecules with gas storage capacity per cage in the following order: CO2>CH4>N2. The cage molecules show selectivity of CO2 over CH4/N2 and demonstrate capability in gas separation. These studies suggest that porous liquids can be useful for CO2 capture from power plants and CH4 separation from shale gas. The effect of adsorbed water on the three-dimensional structure of ionic liquids [BMIM][Tf2N] near mica surfaces was investigated. It was shown that water, as a dielectric solvent and a molecular liquid, can alter layering and ordering of ions near mica surfaces. A three-way coupling between the self-organization of ions, the adsorption of interfacial water, and the electrification of the solid surfaces was suggested to govern the structure of ionic liquid near solid surfaces. The effects of electrode charge and surface curvature on adsorption of N2 molecules near electrodes immersed in water were studied. N2 molecules are enriched near neutral electrodes. Their enrichment is enhanced as the electrode becomes moderately charged but is reduced when the electrode becomes highly charged. Near highly charged electrodes, the amount of N2 molecules available for electrochemical reduction is an order of magnitude higher near spherical electrodes with radius ~1nm than near planar electrodes. The underlying molecular mechanisms are elucidated and their implications for development of electrodes for electrochemical reduction of N2 are discussed.
- Doubling Power Output of Starch Biobattery Treated by the Most Thermostable Isoamylase from an Archaeon Sulfolobus tokodaiiCheng, Kun; Zhang, Fei; Sun, Fangfang; Chen, Hongge; Zhang, Y. H. Percival (Nature, 2015-08-20)Biobattery, a kind of enzymatic fuel cells, can convert organic compounds (e.g., glucose, starch) to electricity in a closed system without moving parts. Inspired by natural starch metabolism catalyzed by starch phosphorylase, isoamylase is essential to debranch alpha-1,6-glycosidic bonds of starch, yielding linear amylodextrin – the best fuel for sugar-powered biobattery. However, there is no thermostable isoamylase stable enough for simultaneous starch gelatinization and enzymatic hydrolysis, different from the case of thermostable alpha-amylase. A putative isoamylase gene was mined from megagenomic database. The open reading frame ST0928 from a hyperthermophilic archaeron Sulfolobus tokodaii was cloned and expressed in E. coli. The recombinant protein was easily purified by heat precipitation at 80 °C for 30 min. This enzyme was characterized and required Mg²⁺ as an activator. This enzyme was the most stable isoamylase reported with a half lifetime of 200 min at 90 °C in the presence of 0.5 mM MgCl₂, suitable for simultaneous starch gelatinization and isoamylase hydrolysis. The cuvett-based air-breathing biobattery powered by isoamylase-treated starch exhibited nearly doubled power outputs than that powered by the same concentration starch solution, suggesting more glucose 1-phosphate generated.
- A physical catalyst for the electrolysis of nitrogen to ammoniaSong, Yang; Johnson, Daniel; Peng, Rui; Hensley, Dale K.; Bonnesen, Peter V.; Liang, Liangbo; Huang, Jingsong; Yang, Fengchang; Zhang, Fei; Qiao, Rui; Baddorf, Arthur P.; Tschaplinski, Timothy J.; Engle, Nancy L.; Hatzell, Marta C.; Wu, Zili; Cullen, David A.; Meyer, Harry M.; Sumpter, Bobby G.; Rondinone, Adam J. (AAAS, 2018-04-01)Ammonia synthesis consumes 3 to 5% of the world’s natural gas, making it a significant contributor to greenhouse gas emissions. Strategies for synthesizing ammonia that are not dependent on the energy-intensive and methane-based Haber-Bosch process are critically important for reducing global energy consumption and minimizing climate change. Motivated by a need to investigate novel nitrogen fixation mechanisms, we herein describe a highly textured physical catalyst, composed of N-doped carbon nanospikes, that electrochemically reduces dissolved N2 gas to ammonia in an aqueous electrolyte under ambient conditions. The Faradaic efficiency (FE) achieves 11.56 ± 0.85% at −1.19 V versus the reversible hydrogen electrode, and the maximum production rate is 97.18 ± 7.13 mg hour−1 cm−2. The catalyst contains no noble or rare metals but rather has a surface composed of sharp spikes, which concentrates the electric field at the tips, thereby promoting the electroreduction of dissolved N2 molecules near the electrode. The choice of electrolyte is also critically important because the reaction rate is dependent on the counterion type, suggesting a role in enhancing the electric field at the sharp spikes and increasing N2 concentration within the Stern layer. The energy efficiency of the reaction is estimated to be 5.25% at the current FE of 11.56%.