Browsing by Author "Zhang, Hong"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Chemical Mechanism Solvers in Air Quality ModelsZhang, Hong; Linford, John C.; Sandu, Adrian; Sander, Rolf (MDPI, 2011-09-01)The solution of chemical kinetics is one of the most computationally intensive tasks in atmospheric chemical transport simulations. Due to the stiff nature of the system, implicit time stepping algorithms which repeatedly solve linear systems of equations are necessary. This paper reviews the issues and challenges associated with the construction of efficient chemical solvers, discusses several families of algorithms, presents strategies for increasing computational efficiency, and gives insight into implementing chemical solvers on accelerated computer architectures.
- Efficient Time Stepping Methods and Sensitivity Analysis for Large Scale Systems of Differential EquationsZhang, Hong (Virginia Tech, 2014-09-09)Many fields in science and engineering require large-scale numerical simulations of complex systems described by differential equations. These systems are typically multi-physics (they are driven by multiple interacting physical processes) and multiscale (the dynamics takes place on vastly different spatial and temporal scales). Numerical solution of such systems is highly challenging due to the dimension of the resulting discrete problem, and to the complexity that comes from incorporating multiple interacting components with different characteristics. The main contributions of this dissertation are the creation of new families of time integration methods for multiscale and multiphysics simulations, and the development of industrial-strengh tools for sensitivity analysis. This work develops novel implicit-explicit (IMEX) general linear time integration methods for multiphysics and multiscale simulations typically involving both stiff and non-stiff components. In an IMEX approach, one uses an implicit scheme for the stiff components and an explicit scheme for the non-stiff components such that the combined method has the desired stability and accuracy properties. Practical schemes with favorable properties, such as maximized stability, high efficiency, and no order reduction, are constructed and applied in extensive numerical experiments to validate the theoretical findings and to demonstrate their advantages. Approximate matrix factorization (AMF) technique exploits the structure of the Jacobian of the implicit parts, which may lead to further efficiency improvement of IMEX schemes. We have explored the application of AMF within some high order IMEX Runge-Kutta schemes in order to achieve high efficiency. Sensitivity analysis gives quantitative information about the changes in a dynamical model outputs caused by caused by small changes in the model inputs. This information is crucial for data assimilation, model-constrained optimization, inverse problems, and uncertainty quantification. We develop a high performance software package for sensitivity analysis in the context of stiff and nonstiff ordinary differential equations. Efficiency is demonstrated by direct comparisons against existing state-of-art software on a variety of test problems.
- FATODE: A Library for Forward, Adjoint, and Tangent Linear Integration of ODEsZhang, Hong; Sandu, Adrian (Department of Computer Science, Virginia Polytechnic Institute & State University, 2011-11-01)FATODE is a FORTRAN library for the integration of ordinary differential equations with direct and adjoint sensitivity analysis capabilities. The paper describes the capabilities, implementation, code organization, and usage of this package. FATODE implements four families of methods -- explicit Runge-Kutta for nonstiff problems and fully implicit Runge-Kutta, singly diagonally implicit Runge-Kutta, and Rosenbrock for stiff problems. Each family contains several methods with different orders of accuracy; users can add new methods by simply providing their coefficients. For each family the forward, adjoint, and tangent linear models are implemented. General purpose solvers for dense and sparse linear algebra are used; users can easily incorporate problem-tailored linear algebra routines. The performance of the package is demonstrated on several test problems. To the best of our knowledge FATODE is the first publicly available general purpose package that offers forward and adjoint sensitivity analysis capabilities in the context of Runge Kutta methods. A wide range of applications are expected to benefit from its use; examples include parameter estimation, data assimilation, optimal control, and uncertainty quantification.