Browsing by Author "Zhang, Ruide"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Classification Team Project for IDEAL in CS5604, Spring 2015Cui, Xuewen; Tao, Rongrong; Zhang, Ruide (2015-05-10)Given the tweets from the instructor and cleaned webpages from the Reducing Noise team, the planned tasks for our group were to find the best: (1) way to extract information that will be used for document representation; (2) feature selection method to construct feature vectors; and (3) way to classify each document into categories, considering the ontology developed in the IDEAL project. We have figured out an information extraction method for document representation, feature selection method for feature vector construction, and classification method. The categories will be associated with the documents, to aid searching and browsing using Solr. Our team handles both tweets and webpages. The tweets and webpages come in the form of text files that have been produced by the Reducing Noise team. The other input is a list of the specific events that the collections are about. We are able to construct feature vectors after information extraction and feature selection using Apache Mahout. For each document, a relational version of the raw data for an appropriate feature vector is generated. We applied the Naïve Bayes classification algorithm in Apache Mahout to generate the vector file and the trained model. The classification algorithm uses the feature vectors to go into classifiers for training and testing that works with Mahout. However, Mahout is not able to predict class labels for new data. Finally we came to a solution provided by Pangool.net, which is a Java, low-level MapReduce API. This package provides us a MapReduce Naïve Bayes classifier that can predict class labels for new data. After modification, this package is able to read in and output to AVRO file in HDFS. The correctness of our classification algorithms, using 5-fold cross-validation, was promising.
- Hardware-Aided Privacy Protection and Cyber Defense for IoTZhang, Ruide (Virginia Tech, 2020-06-08)With recent advances in electronics and communication technologies, our daily lives are immersed in an environment of Internet-connected smart things. Despite the great convenience brought by the development of these technologies, privacy concerns and security issues are two topics that deserve more attention. On one hand, as smart things continue to grow in their abilities to sense the physical world and capabilities to send information out through the Internet, they have the potential to be used for surveillance of any individuals secretly. Nevertheless, people tend to adopt wearable devices without fully understanding what private information can be inferred and leaked through sensor data. On the other hand, security issues become even more serious and lethal with the world embracing the Internet of Things (IoT). Failures in computing systems are common, however, a failure now in IoT may harm people's lives. As demonstrated in both academic research and industrial practice, a software vulnerability hidden in a smart vehicle may lead to a remote attack that subverts a driver's control of the vehicle. Our approach to the aforementioned challenges starts by understanding privacy leakage in the IoT era and follows with adding defense layers to the IoT system with attackers gaining increasing capabilities. The first question we ask ourselves is "what new privacy concerns do IoT bring". We focus on discovering information leakage beyond people's common sense from even seemingly benign signals. We explore how much private information we can extract by designing information extraction systems. Through our research, we argue for stricter access control on newly coming sensors. After noticing the importance of data collected by IoT, we trace where sensitive data goes. In the IoT era, edge nodes are used to process sensitive data. However, a capable attacker may compromise edge nodes. Our second research focuses on applying trusted hardware to build trust in large-scale networks under this circumstance. The application of trusted hardware protects sensitive data from compromised edge nodes. Nonetheless, if an attacker becomes more powerful and embeds malicious logic into code for trusted hardware during the development phase, he still can secretly steal private data. In our third research, we design a static analyzer for detecting malicious logic hidden inside code for trusted hardware. Other than the privacy concern of data collected, another important aspect of IoT is that it affects the physical world. Our last piece of research work enables a user to verify the continuous execution state of an unmanned vehicle. This way, people can trust the integrity of the past and present state of the unmanned vehicle.