Browsing by Author "Zhang, Wenming"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Glyceraldehyde-3-Phosphate Dehydrogenase Increases the Adhesion of Lactobacillus reuteri to Host Mucin to Enhance Probiotic EffectsDeng, Zhaoxi; Dai, Tian; Zhang, Wenming; Zhu, Junli; Luo, Xin M.; Fu, Dongyan; Liu, Jianxin; Wang, Haifeng (MDPI, 2020-12-21)The ability to adhere to the intestinal mucus layer is an important property of probiotic bacteria. Lactobacillus reuteri strains ZJ615 and ZJ617 show low and high adhesion, respectively, to intestinal epithelial cells. In this study, we quantified bacterial cell wall-associated glyceraldehyde-3-phosphate dehydrogenases (cw-GAPDH) and bacterial cell membrane permeability in both strains using immunoblotting and flow cytometry, respectively. Highly adhesive L. reuteri ZJ617 possessed significantly more cw-GAPDH, higher cell membrane permeability, and significantly higher adhesive ability toward mucin compared with low-adhesive L. reuteri ZJ615. In vitro adhesion studies and analysis of interaction kinetics using the Octet, the system revealed significantly decreased interaction between L. reuteri and mucin when mucin was oxidized when bacterial surface proteins were removed when bacteria were heat-inactivated at 80 °C for 30 min, and when the interaction was blocked with an anti-GAPDH antibody. SWISS-MODEL analysis suggested intensive interactions between mucin glycans (GalNAcα1-O-Ser, GalNAcαSer, and Galβ3GalNAc) and GAPDH. Furthermore, in vivo studies revealed significantly higher numbers of bacteria adhering to the jejunum, ileum, and colon of piglets orally inoculated with L. reuteri ZJ617 compared with those inoculated with L. reuteri ZJ615; this led to a significantly decreased rate of diarrhea in piglets inoculated with L. reuteri ZJ617. In conclusion, there are strong correlations among the abundance of cw-GAPDH in L. reuteri, the ability of the bacterium to adhere to the host, and the health benefits of this probiotic.
- Immunomodulation and signaling mechanism of Lactobacillus rhamnosus GG and its components on porcine intestinal epithelial cells stimulated by lipopolysaccharideYuan, Lijuan; Zhang, Wenming; Wang, Haifeng (Elsevier, 2015-05-14)Background/purpose: This study aimed to evaluate the immunomodulatory effects and signaling mechanisms of Lactobacillus rhamnosus GG (LGG) and its components [surfacelayer protein (SLP), DNA, exopolysaccharides, and CpG oligodeoxynucleotides] on lipopolysaccharide (LPS)-stimulated porcine intestinal epithelial cell (IEC) IPEC-J2. Methods: The mRNA expressions of inflammatory cytokines and Toll-like receptors (TLRs) were measured by quantitative real-time polymerase chain reaction. Activation of mitogenactivated protein kinase (MAPK) and nuclear factor kappa B (NF-kB) signaling was detected by western blot and immunofluorescence. Results: Pretreatment of IPEC-J2 cells with LGG, SLP, or exopolysaccharides significantly alleviated LPS-induced inflammatory cytokines and TLR activation at mRNA level. LGG, SLP, and exopolysaccharides also attenuated LPS-induced MAPK and NF-kB signaling activations. CpG oligodeoxynucleotides significantly increased the interleukin 12, tumor necrosis factor a, and TLR9 mRNA levels and enhanced NF-kB signaling activation in LPS-stimulated cells. Conclusion: LGG had immunomodulatory effects on LPS-induced porcine IECs by modulating TLR expressions and inhibiting MAPK and NF-kB signaling to decrease inflammatory cytokine expressions. Components of LGG exerted immunomodulatory effects on porcine IECs, especially immunostimulatory CpG oligodeoxynucleotides.
- Lactobacillus rhamnosus GG modulates innate signaling pathway and cytokine responses to rotavirus vaccine in intestinal mononuclear cells of gnotobiotic pigs transplanted with human gut microbiotaWang, Haifeng; Gao, Kan; Wen, Ke; Allen, Irving C.; Li, Guohua; Zhang, Wenming; Kocher, Jacob; Yang, Xingdong; Giri-Rachman, Ernawati; Li, Guan-Hong; Clark-Deener, Sherrie; Yuan, Lijuan (2016)BACKGROUND: A better understanding of mechanisms underlying dose-effects of probiotics in their applications as treatments of intestinal infectious or inflammatory diseases and as vaccine adjuvant is needed. In this study, we evaluated the modulatory effects of Lactobacillus rhamnosus GG (LGG) on transplanted human gut microbiota (HGM) and on small intestinal immune cell signaling pathways in gnotobiotic pigs vaccinated with an oral attenuated human rotavirus (AttHRV) vaccine. RESULTS: Neonatal HGM transplanted pigs were given two doses of AttHRV on 5 and 15 days of age and were divided into three groups: none-LGG (AttHRV), 9-doses LGG (AttHRV + LGG9X), and 14-doses LGG (AttHRV + LGG14X) (n = 3-4). At post-AttHRV-inoculation day 28, all pigs were euthanized and intestinal contents and ileal tissue and mononuclear cells (MNC) were collected. AttHRV + LGG14X pigs had significantly increased LGG titers in the large intestinal contents and shifted structure of the microbiota as indicated by the formation of a cluster that is separated from the cluster formed by the AttHRV and AttHRV + LGG9X pigs. The increase in LGG titers concurred with significantly increased ileal HRV-specific IFN-γ producing T cell responses to the AttHRV vaccine reported in our previous publication, suggesting pro-Th1 adjuvant effects of the LGG. Both 9- and 14-doses LGG fed pig groups had significantly higher IkBα level and p-p38/p38 ratio, while significantly lower p-ERK/ERK ratio than the AttHRV pigs, suggesting activation of regulatory signals during immune activation. However, 9-doses, but not 14-doses LGG fed pigs had enhanced IL-6, IL-10, TNF-α, TLR9 mRNA levels, and p38 MAPK and ERK expressions in ileal MNC. Increased TLR9 mRNA was in parallel with higher mRNA levels of cytokines, p-NF-kB and higher p-p38/p38 ratio in MNC of the AttHRV + LGG9X pigs. CONCLUSIONS: The relationship between modulation of gut microbiota and regulation of host immunity by different doses of probiotics is complex. LGG exerted divergent dose-dependent effects on the intestinal immune cell signaling pathway responses, with 9-doses LGG being more effective in activating the innate immunostimulating TLR9 signaling pathway than 14-doses in the HGM pigs vaccinated with AttHRV.