Browsing by Author "Zhang, Xunzhong"
Now showing 1 - 20 of 27
Results Per Page
Sort Options
- Antioxidant metabolism variation associated with alkali-salt tolerance in thirty switchgrass (Panicum virgatum) linesHu, Guofu; Liu, Yiming; Duo, Tianqi; Zhao, Bingyu Y.; Cui, Guowen; Ji, Jing; Kuang, Xiao; Ervin, Erik H.; Zhang, Xunzhong (PLOS, 2018-06-25)Soil salinization is a major factor limiting crop growth and development in many areas. Switchgrass (Panicum virgatum L.) is an important warm-season grass species used for biofuel production. The objective of this study was to investigate antioxidant metabolism, proline, and protein variation associated with alkali-salt tolerance among 30 switchgrass lines and identify metabolic markers for evaluating alkali-salt tolerance of switchgrass lines. The grass lines were transplanted into plastic pots containing fine sand. When the plants reached E5 developmental stage, they were subjected to either alkali-salt stress treatment (150 mM Na+ and pH of 9.5) or control (no alkali-salt stress) for 20 d. The 30 switchgrass lines differed in alkali-salt tolerance as determined by the level of leaf malondialdehyde (MDA), antioxidant enzyme activity [(superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX)], proline and protein. Alkali-salt stress increased MDA, proline, SOD, reduced CAT activity, but its effect on protein and APX varied depending on lines. Wide variations in the five parameters existed among the 30 lines. In general, the lines with higher CAT activity and lower proline content under alkali-salt stress had less MDA, exhibiting better alkali-salt tolerance. Among the five parameters, CAT can be considered as valuable metabolic markers for assessment of switchgrass tolerance to alkali-salt stress.
- Arsenic and nutrient absorption characteristics and antioxidant response in different leaves of two ryegrass (Lolium perenne) species under arsenic stressLi, Jinbo; Zhao, Qian; Xue, Bohan; Wu, Hongyan; Song, Guilong; Zhang, Xunzhong (PLoS, 2019-11-27)Arsenic (As), a heavy metal element, causes soil environmental concerns in many parts of the world, and ryegrass has been considered as an effective plant species for bioremediation of heavy metal pollution including As. This study was designed to investigate As content, nutrient absorption and antioxidant enzyme activity associated with As tolerance in the mature leaves, expanded leaves and emerging leaves of perennial ryegrass (Lolium perenne) and annual ryegrass (Lolium multiflorum) under 100 mgkg-1 As treatment. The contents of As, calcium (Ca), magnesium (Mg), manganese (Mn) in the leaves of both ryegrass species were greatest in the mature leaves and least in the emerging leaves. The nitrogen (N), phosphorus (P), potassium (K) contents of both ryegrass species were greatest in the emerging leaves and least in the mature leaves. The As treatment reduced biomass more in the mature leaves and expanded leaves relative to the emerging leaves for annual ryegrass and reduced more in emerging leaves relative to the mature and expanded leaves for perennial ryegrass. Perennial ryegrass had higher As content than annual ryegrass in all three kinds of leaves. The As treatment increased hydrogen peroxide (H2O2) in expanded leaves of two ryegrass species, relative to the control. The As treatment increased the ascorbate peroxidase (APX) activity in the expanded leaves of perennial ryegrass and the mature leaves of annual ryegrass, the catalase (CAT) activity in the mature and expanded leaves of perennial ryegrass and the emerging leaves of annual ryegrass, relative to the control. The As treatment reduced peroxidase (POD) activity in all three kinds of leaves of annual ryegrass and superoxide dismutase (SOD) activity in expanded leaves of perennial ryegrass, relative to the control. The results of this study suggest that As tolerance may vary among different ages of leaf and reactive oxygen species (ROS) and antioxidant enzyme activity may be associated with As tolerance in the ryegrass.
- Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parametersLiu, Yiming; Zhang, Xunzhong; Tran, Hong T.; Shan, Liang; Kim, Jeongwoon; Childs, Kevin L.; Ervin, Erik H.; Frazier, Taylor P.; Zhao, Bingyu Y. (2015-09-22)Background Switchgrass (Panicum virgatum L.) is a warm-season C4 grass that is a target lignocellulosic biofuel species. In many regions, drought stress is one of the major limiting factors for switchgrass growth. The objective of this study was to evaluate the drought tolerance of 49 switchgrass genotypes. The relative drought stress tolerance was determined based on a set of parameters including plant height, leaf length, leaf width, leaf sheath length, leaf relative water content (RWC), electrolyte leakage (EL), photosynthetic rate (Pn), stomatal conductance (g s), transpiration rate (Tr), intercellular CO2 concentration (Ci), and water use efficiency (WUE). Results SRAP marker analysis determined that the selected 49 switchgrass genotypes represent a diverse genetic pool of switchgrass germplasm. Principal component analysis (PCA) and drought stress indexes (DSI) of each physiological parameter showed significant differences in the drought stress tolerance among the 49 genotypes. Heatmap and PCA data revealed that physiological parameters are more sensitive than morphological parameters in distinguishing the control and drought treatments. Metabolite profiling data found that under drought stress, the five best drought-tolerant genotypes tended to have higher levels of abscisic acid (ABA), spermine, trehalose, and fructose in comparison to the five most drought-sensitive genotypes. Conclusion Based on PCA ranking value, the genotypes TEM-SEC, TEM-LoDorm, BN-13645-64, Alamo, BN-10860-61, BN-12323-69, TEM-SLC, T-2086, T-2100, T-2101, Caddo, and Blackwell-1 had relatively higher ranking values, indicating that they are more tolerant to drought. In contrast, the genotypes Grif Nebraska 28, Grenville-2, Central Iowa Germplasm, Cave-in-Rock, Dacotah, and Nebraska 28 were found to be relatively sensitive to drought stress. By analyzing physiological response parameters and different metabolic profiles, the methods utilized in this study identified drought-tolerant and drought-sensitive switchgrass genotypes. These results provide a foundation for future research directed at understanding the molecular mechanisms underlying switchgrass tolerance to drought.
- Biochemical and physiological responses of Cannabis sativa to an integrated plant nutrition systemFilho, Jose F. Da Cunha Leme; Thomason, Wade E.; Evanylo, Gregory K.; Zhang, Xunzhong; Strickland, Michael S.; Chim, Bee K.; Diatta, Andre A. (2020-11)The illegal status of cannabis (Cannabis sativa L.) post-World War II resulted in a lack of research on agricultural practices. However, there is a resurgence of interest in cannabis due to diverse uses such as a rich source of cellulosic/woody fiber and construction uses, seed oil, bioenergy and pharmaceutical properties. The principle of an integrated plant nutrition system (IPNS) is to enable adaptation of plant nutrition and soil fertility management to local site characteristics, attempting to optimize use of inorganic, organic and biological resources. This project investigated the individual and combined use of inorganic, organic and biological fertilizer resources on cannabis before and after a period of moderate water stress. We evaluated the individual and combined effects of commercial synthetic fertilizer, humic acid (HA), manure tea and bioinoculant as inorganic, organic and biological resources, respectively on cannabis growth and physiological parameters. Our hypothesis was that the synergetic effects of HA + biofertilizers would improve cannabis growth. When compared to the control, the application of HA and biofertilizer alone, or in combination, increased plant height, chlorophyll content and photosynthetic efficiency by 55, 8 and 12%, respectively, after water stress. Cannabis biomass of treated plants was rarely different from the control. The combined application of HA + biofertilizer resulted in additive, but not synergistic, increases in measured parameter. Future research should focus on the effects of biostimulants on CBD/THC content due to the potential impact on the production of secondary metabolites in plants under stress.
- Differential Responses of CO2 Assimilation, Carbohydrate Allocation and Gene Expression to NaCl Stress in Perennial Ryegrass with Different Salt ToleranceHu, Tao; Hu, Longxing; Zhang, Xunzhong; Zhang, Pingping; Zhao, Zhuangjun; Fu, Jinmin (PLOS, 2013-06-14)Little is known about the effects of NaCl stress on perennial ryegrass (Lolium perenne L.) photosynthesis and carbohydrate flux. The objective of this study was to understand the carbohydrate metabolism and identify the gene expression affected by salinity stress. Seventy-four days old seedlings of two perennial ryegrass accessions (salt-sensitive ‘PI 538976’ and salt-tolerant ‘Overdrive’) were subjected to three levels of salinity stress for 5 days. Turf quality in all tissues (leaves, stems and roots) of both grass accessions negatively and significantly correlated with GFS (Glu+Fru+Suc) content, except for ‘Overdrive’ stems. Relative growth rate (RGR) in leaves negatively and significantly correlated with GFS content in ‘Overdrive’ (P<0.01) and ‘PI 538976’ (P<0.05) under salt stress. ‘Overdrive’ had higher CO2 assimilation and Fv/Fm than ‘PI 538976’. Intercellular CO2 concentration, however, was higher in ‘PI 538976’ treated with 400 mM NaCl relative to that with 200 mM NaCl. GFS content negatively and significantly correlated with RGR in ‘Overdrive’ and ‘PI 538976’ leaves and in ‘PI 538976’ stems and roots under salt stress. In leaves, carbohydrate allocation negatively and significantly correlated with RGR (r2 = 0.83, P<0.01) and turf quality (r2 = 0.88, P<0.01) in salt-tolerant ‘Overdrive’, however, the opposite trend for salt-sensitive ‘PI 538976’ (r2 = 0.71, P<0.05 for RGR; r2 = 0.62, P>0.05 for turf quality). A greater up-regulation in the expression of SPS, SS, SI, 6-SFT gene was observed in ‘Overdrive’ than ‘PI 538976’. A higher level of SPS and SS expression in leaves was found in ‘PI 538976’ relative to ‘Overdrive’. Accumulation of hexoses in roots, stems and leaves can induce a feedback repression to photosynthesis in salt-stressed perennial ryegrass and the salt tolerance may be changed with the carbohydrate allocation in leaves and stems.
- The effect of fast pyrolysis biochar made from poultry litter on soil properties and plant growthRevell, Kenneth Todd (Virginia Tech, 2011-12-20)Little is known about the effect of biochar created from poultry litter on soil properties and plant growth. Five studies were conducted using biochar made by the fast pyrolysis of poultry litter. Two were greenhouse studies and three were field studies. The greenhouse studies were conducted with a sandy loam soil and a silt loam soil. First, lettuce (Lactuca sativa L) seeds were germinated in the greenhouse across biochar incorporation rates from 0 to 100%, and secondly a trial was conducted in which green peppers (capsicum annum L) were grown in soils with up to 5% biochar by weight. Elemental analysis was completed on the biochar and the soils were analyzed for bulk density (BD), water holding capacity (WHC), pH, cation exchange capacity (CEC), soluble salts (SS) and extractable nutrients. The field studies all used the rates of 0, 4.5, and 9 Mg ha-1 biochar and the rates were applied in the early spring of 2009 and 2010. Biochar was surface applied on a tall fescue pasture [Lolium arundinaceum (Schreb.) Darbysh. (=Festuca arundinacea Schreb. subsp. arundinacea)] and tilled in on two green pepper field sites. The soils were analyzed for carbon (C) content, pH, CEC, Mehlich 1 P, and SS. No significant difference was found in yields at any of the three sites, but differences in forage quality were found. Biochar made from poultry litter showed several benefits as a soil amendment in all the studies, but application rates would be limited by soil test P and pH.
- Effects of Cytokinin and Nitrogen on Drought Tolerance of Creeping BentgrassChang, Zhihui; Liu, Yang; Dong, Hui; Teng, Ke; Han, Liebao; Zhang, Xunzhong (PLOS, 2016-04-21)
- Effects of Nitrate and Cytokinin on Nitrogen Metabolism and Heat Stress Tolerance of Creeping BentgrassWang, Kehua (Virginia Tech, 2010-07-23)Creeping bentgrass (Agrostis stolonifera L.) is a major low-cut cool-season turfgrass used worldwide. The objectives of this research were to: 1) to gain insight into the diurnal fluctuation of N metabolism and effects of cytokinin (CK) and nitrate; 2) to characterize the impacts of N and CK on creeping bentgrass under heat stress; 3) to investigate the simultaneous effects of CK and N on the antioxidant responses of heat stressed creeping bentgrass; and 4) to examine the expression pattern of the major heat shock proteins (HSPs) in creeping bentgrass during different heat stress periods, and then to study the influence of N on the expression pattern of HSPs. The transcript abundance of nitrate reductase (NR), nitrite reductase (NIR), plastidic glutamine synthetase (GS2), ferredoxin-dependent glutamate synthase (Fd-GOGAT), and glutamate dehydrogenase (GDH) and N metabolites in shoots were monitored during the day/night cycle (14/8 h). All the measured parameters exhibited clear diurnal changes, except GS2 expression and total protein. Both NR expression and nitrate content in shoots showed a peak after 8.5 h in dark, indicating a coordinated oscillation. Nitrate nutrition increased diurnal variation of nitrate content compared to control and CKHowever, CK shifted the diurnal in vivo NR activity pattern during this period. Grass grown at high N had better turf quality (TQ), higher Fv/Fm, normalized difference vegetation index (NDVI), and chlorophyll concentration at both 15 d and 28 d of heat stress than at low N, except for TQ at 15 d. Shoot NO3-, NH4+, and amino acids increased due to the high N treatment, but not water soluble proteins. High N also induced maximum shoot nitrate reductase activity (NRmax) at 1 d. CK increased NDVI at 15 d and Fv/Fm at 28 d. In addition, grass under 100 µM CK had greatest NRmax at both 1 d and 28 d. Under high N with 100 µM CK, root tZR and iPA were 160% and 97% higher than under low N without CK, respectively. Higher O2- production, H2O2 concentration, and higher malonydialdehyde (MDA) content in roots were observed in grass grown at high N. The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and guaiacol peroxidase (POD) in roots were enhanced by high N at 19, 22, and 24% levels, respectively, relative to low N. Twenty-eight days of heat stress resulted in either the development of new isoforms or enhanced isoform intensities of SOD, APX, and POD in roots compared to the grass responses prior to heat stress. However, no apparent differences were observed among treatments. No CK effects on these antioxidant parameters were found in this experiment. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower shoot electrolyte leakage (ShEL) and higher root viability (RV), suggesting better heat resistance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and that their roles in creeping bentgrass thermotolerance were affected by N level.
- Elucidation and analyses of the regulatory networks of upland and lowland ecotypes of switchgrass in response to drought and salt stressesZuo, Chunman; Tang, Yuhong; Fu, Hao; Liu, Yiming; Zhang, Xunzhong; Zhao, Bingyu Y.; Xu, Ying (PLOS, 2018-09-24)Switchgrass is an important bioenergy crop typically grown in marginal lands, where the plants must often deal with abiotic stresses such as drought and salt. Alamo is known to be more tolerant to both stress types than Dacotah, two ecotypes of switchgrass. Understanding of their stress response and adaptation programs can have important implications to engineering more stress tolerant plants. We present here a computational study by analyzing time-course transcriptomic data of the two ecotypes to elucidate and compare their regulatory systems in response to drought and salt stresses. A total of 1,693 genes (target genes or TGs) are found to be differentially expressed and possibly regulated by 143 transcription factors (TFs) in response to drought stress together in the two ecotypes. Similarly, 1,535 TGs regulated by 110 TFs are identified to be involved in response to salt stress. Two regulatory networks are constructed to predict their regulatory relationships. In addition, a time-dependent hidden Markov model is derived for each ecotype responding to each stress type, to provide a dynamic view of how each regulatory network changes its behavior over time. A few new insights about the response mechanisms are predicted from the regulatory networks and the time-dependent models. Comparative analyses between the network models of the two ecotypes reveal key commonalities and main differences between the two regulatory systems. Overall, our results provide new information about the complex regulatory mechanisms of switchgrass responding to drought and salt stresses.
- Exogenous Salicylic Acid Optimizes Photosynthesis, Antioxidant Metabolism, and Gene Expression in Perennial Ryegrass Subjected to Salt StressWang, Ziyue; Dong, Shuang; Teng, Ke; Chang, Zhihui; Zhang, Xunzhong (MDPI, 2022-08-15)Salicylic acid (SA) is a plant growth regulator that can enhance the abiotic stress tolerance of plants; however, the physiological mechanisms are not yet fully understood. The objective of this study was to examine whether exogenous SA could enhance the salt tolerance of perennial ryegrass (Loliumperenne L.; PRG) and investigate the physiological underlying mechanisms. SA was applied to the foliage of PRG at five concentrations (0, 0.25, 0.5, and 1 mM). The SA-treated grass was grown under either control (0 mM NaCl) or salt stress (250 mM NaCl) conditions for 24 d. The SA treatments reduced the leaf electrolyte leakage (EL), malonaldehyde (MDA), and hydrogen peroxide (H2O2) content by 36%, 41%, and 40%, respectively, relative to the control under salt stress as measured at 24 d. The SA treatments also alleviated the decline in the leaf photosynthetic rate (Pn), stomatal conductance (gs), nitrate activity (NR), turfgrass quality (TQ) ratings, and chlorophyll (Chl) content under salt stress. In addition, exogenous SA increased the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD) as well as the expression levels of the Cyt Cu/ZnSOD, FeSOD, APX, CAT, and POD genes under salt stress. The results of this study suggested that the foliar application of SA at 0.25 and 0.5 mM may enhance photosynthesis and antioxidant defense systems and thus improve tolerance to salt stress in perennial ryegrass.
- Factors governing zoysiagrass response to herbicides applied during spring green-upCraft, Jordan Michael (Virginia Tech, 2021-03-29)Zoysiagrass (Zoysia spp.) is utilized as a warm-season turfgrass because of its density, visual quality, stress tolerance, and reduced input requirements. Turf managers often exploit winter dormancy in warm-season turfgrass to apply nonselective herbicides such as glyphosate and glufosinate to control winter annual weeds. Although this weed control strategy is common in bermudagrass (Cynodon spp.), it has been less adopted in zoysiagrass due to unexplainable turf injury. Many university extension publications recommend against applying nonselective herbicides to dormant zoysiagrass despite promotional language found in a few peer-reviewed publications and product labels. Previous researchers have used vague terminology such as "applied to dormant zoysiagrass" or "applied prior to zoysiagrass green-up" to describe herbicide application timings. These ambiguous terms have led to confusion since zoysiagrass typically has subcanopy green leaves and stems throughout the winter dormancy period. No research has sought to explain why some turfgrass managers are observing zoysiagrass injury when the literature only offers evidence that these herbicides do not injure dormant zoysiagrass. We sought to explore various herbicides, prevailing temperatures surrounding application, heat unit based application timings, and spray penetration into zoysiagrass canopies as possible contributors to zoysiagrass injury. The results indicated that a wide range of herbicides may be safely used in dormant zoysiagrass. However, as zoysiagrass begins to produce more green leaves, herbicides such as metsulfuron, glyphosate, glufosinate, flumioxazin, and diquat become too injurious. Glufosinate was consistently more injurious regardless of application timing than glyphosate and other herbicides. When temperatures were 10 °C for 7 d following treatment, a delayed effect of glyphosate and glufosinate effect on digitally-assessed green cover loss was noted on zoysiagrass sprigs. In subsequent studies on turf plugs, a 14-d incubation period at 10 °C reduced glyphosate but not glufosinate effects on turf green color reduction. Glyphosate applied at 125, and 200 GDD5C can safely be applied to zoysiagrass while glufosinate applied at the same timings caused inconsistent and often unacceptable zoysiagrass injury in field studies conducted at Blacksburg, VA, Starkville, MS, and Virginia Beach, VA. Zoysiagrass green leaf density was described as a function of accumulated heat units consistently across years and locations but variably by turf mowing height. Turf normalized difference vegetative index was primarily governed by green turf cover but reduced by herbicide treatments, especially when applied at greater than 200 GDD5C. Substantial spray deposition occurred to subcanopy tissue regardless of nozzle type, pressure and height above the zoysiagrass canopy based on spectrophotometric assessment of a colorant admixture. However, increasing nozzle height above the turf canopy and avoiding air induction type nozzles significantly reduced the percentage of green tissue exposed at lower canopy levels. Absorption of radio-labeled glyphosate and glufosinate was up to four times greater when exposed to zoysiagrass stems compared to leaves. Glyphosate translocated more than glufosinate and both herbicides moved more readily from stem to leaf than from leaf to stem
- Heat Shock Proteins in Relation to Heat Stress Tolerance of Creeping Bentgrass at Different N LevelsWang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik H. (PLOS, 2014-07-22)Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on ‘Penn-A4’ creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha−1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.
- Humic Acid Promotes the Growth of Switchgrass under Salt Stress by Improving Photosynthetic FunctionZhang, Jiaxing; Meng, Qiuxia; Yang, Zhiping; Zhang, Qiang; Yan, Min; Hou, Xiaochan; Zhang, Xunzhong (MDPI, 2024-05-19)As a potential crop in saline-alkali land, the growth of switchgrass could also be threatened by salt stress. Promoting the growth of switchgrass under salt stress by humic acid has great significance in the utilization of saline-alkali land. In this study, a pot experiment was arranged to investigate the responses of photosynthetic and physicochemical characteristics of switchgrass to HA under salt stress. Results showed that humic acid increased the photosynthetic function of switchgrass and enhanced plant height by 41.1% and dry weight by 26.9% under salt stress. Correlation analysis showed that the membrane aquaporin gene PvPIP1, malondialdehyde, ascorbate peroxidase, abscisic acid, polyamine, and jasmonic acid were important factors affecting the photosynthetic function of switchgrass in this study. Meanwhile, HA reduced the content of malondialdehyde, indicating the alleviation of the membrane damage caused by salt stress. On the other hand, HA upregulated the relative expression of the PvPIP1 gene and activated ascorbate peroxidase, abscisic acid, polyamine, and jasmonic acid in switchgrass to resist salt stress. These improved the membrane stability and promoted the photosynthetic activity of switchgrass to enhance the plant’s tolerance against salt stress and growth. Results from this study are helpful to the efficient growing of switchgrass and the sustainable development of saline-alkali land.
- Impact of Management Practices on Cold Tolerance of Ultradwarf Bermudagrass Putting GreensBooth, Jordan Christopher (Virginia Tech, 2022-04-15)Low temperature injury is among the greatest challenges facing golf courses with ultradwarf bermudagrass (UDB) (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy) putting greens in Virginia. This research focused on the impact of turf covers, fungicide programming, core aeration, and trinexapac-ethyl (TE) on UDB cold tolerance, winter quality, and cold de-acclimation (CD). Our results indicate that the use of turf covers significantly increased UDB canopy and soil temperatures when air temperatures were below -3.9°C. Air gaps under covers and the use of double turf covers increased soil and canopy temperatures compared to single covers alone in some instances, but results were inconsistent. Late fall and early winter fungicide applications of chlorothalonil and azoxystrobin improved UDB quality throughout winter dormancy and spring green up. The addition of a pigmented phosphonate significantly improved winter and spring UDB quality. The addition of acibenzolar-S-methyl to fungicide programs did not improve winter UDB quality or spring green up. Summer core aeration programs were evaluated for their impact on spring green up, turfgrass quality, surface firmness, and moisture retention. Spring UDB green up was improved incrementally as surface disruption increased. Treatments with 20%, 15%, and 10% surface disruption produced higher color vs treatments with lower surface disruption. Surface firmness and volumetric water content of UDB were impacted by construction method but were not significantly impacted by core aeration programs. Field research revealed that 'fall only' and 'fall and winter' TE applications improved UDB quality but only 'fall and winter' delayed UDB premature CD in early spring when UDB can be susceptible to low temperature injury. Growth chamber studies evaluated the impact of TE on UDB cold tolerance to -9.4°C x time duration. Regression analysis predicted a 50% mortality exposure point for UDB under TE treatments of 9.84 hours at -9.4°C (r2=0.836) compared to 11.38 hours at -9.4°C (r2=0.671) for non-treated UDB during cold acclimation. Winter and spring scenarios resulted in delayed CD under TE but no differences in cold tolerance when exposed to -9.4°C. Together, these results increase our understanding of the impact of management practices on UDB winter quality, CD, and low temperature injury.
- Influence of Plant Growth Regulators on Turfgrass Growth, Antioxidant Status, and Drought ToleranceZhang, Xunzhong (Virginia Tech, 1997-07-01)A series of studies were conducted to examine the antioxidant status, drought and disease tolerance, and growth response to foliar application of soluble seaweed (Ascophyllum nodosum) extracts (SE) and humic acid (HA; 25% active HA or 2.9% active HA) in tall fescue (Festuca arundinacea Schreb), Kentucky bluegrass (Poa pratensis L.) and creeping bentgrass (Agrostis palusttis Huds.) grown under low (-0.5 MPa) and high (-0.03 MPa) soil moisture environments. Foliar application of humic acid (2.9 % active HA) at 23.7 and 47.4 l/ha improved leaf water status, shoot and root development in tall fescue, Kentucky bluegrass and creeping bentgrass grown under drought. Humic acid (2.9% active HA) at 15.5 l/ha or SE at 326 g/ha significantly reduced dollarspot incidence and improved turf quality in creeping bentgrass. Drought stress induced an increase of antioxidants alpha-tocopherol and ascorbic acid concentrations in the three turfgrass species. In the experiment with Kentucky bluegrass, drought stress increased beta-carotene concentration, but did not significantly influence superoxide dismutase (SOD) activity. Foliar application of humic acid (25% active HA) at 5 l/ha and/or SE at 326 g/ha consistently enhanced alpha-tocopherol and ascorbic acid concentrations, leaf water status, and growth in the three cool-season turfgrass species grown under low and high soil moisture environments. In the experiment with Kentucky bluegrass, application of HA at 5 l/ha plus SE at 326 g/ha also increased beta-carotene content and SOD activity under low and high soil moisture environments. There were close positive correlations between the antioxidant status and shoot or root growth in the three turfgrass species regardless of soil moisture levels. The antioxidant SOD activity, photosynthetic capacity in terms of Fvm690, and chlorophyll content in terms of Fm730/Fm690 exhibited a seasonal fluctuation in endophyte [Neotiphodium coenophialum (Morgan Jones and Gams) Glenn, Bacon, Price and Hanlin] -free and endophyte-infected tall fescue. Application of SE enhanced SOD activity, photosynthetic capacity, and chlorophyll content in tall fescue, especially at 4 weeks after SE treatment. The SOD activity, photosynthetic capacity and chlorophyll content were not significantly influenced by the endophyte infection. A close positive correlation between SOD and photosynthetic capacity during the summer was found in endophyte-free and endophyte-infected tall fescue.
- An integrated plant nutrition system (IPNS) for corn and cannabis in the Mid-Atlantic USADa Cunha Leme Filho, Jose Franco (Virginia Tech, 2020-05-29)Agroecosystem and cycling loops are open when considering the reutilization of inputs in farming areas. Non-renewable resources have been transformed or relocated from the air, water and land into the system and are flowing out as wastes rather than reusable, recyclable resources. Therefore, current trends in agriculture have moved towards more sustainable cultivation systems with higher efficiency of input use, since mineral nutrient losses due to runoff, leaching, erosion and gas emissions are leading to environmental degradation. A huge variety of materials can serve as a crop nutrient supply and they can be derived from different resources. The integrated plant nutrition system (IPNS) thrives tailoring plant nutrition and soil fertility management, taking advantage of the conjunctive and harmonious use of inorganic, organic and biological resources. We hypothesize that the synergetic effects of the combination of humic acid HA + biofertilizer will improve plant agronomic outcomes when comparing the application of each product alone. We initiated this project conducting a greenhouse study and field experiments evaluating the effects of an IPNS on corn. Posteriorly, the positive results in terms of corn biomass increasing, led to another greenhouse study addressing cannabis (Cannabis sativa L.) due its valuable biomass as an end/selling product. The greenhouse studies evaluated the effects of commercial synthetic fertilizer, HA, compost/manure teas and bioinoculant as inorganic, organic and biological resources, respectively, and their synergy on corn and cannabis early development under a period of water deficit stress. Generally, for both studies, when compared to the control values, the use of HA, biofertilizers and the integration of both substances generated significantly greater early season plant height, chlorophyll content and photosynthetic efficiency. The three-year field trial investigated the effects of nitrogen (N) fertilizer, HA, compost/manure teas and bioinoculant as inorganic, organic and biological resources, respectively and their synergy on corn growth. The individual and integrated application of HA and biofertilizer generally influenced corn development, to varying degrees. In 2017, corn height, NDVI, greenness and vigor were sensitive to the application of these biostimulants in different magnitudes and growth stages, however grain yield and nutrient content were not affected. In combined studies from 2018 and 2019 corn height was not impacted by biostimulant application but NDVI, photosynthetic efficiency, greenness and vigor were affected at different doses and corn growth stages. Only one treatment integrating HA + biofertilizer led to increased grain yield. In sum, these studies provided evidence that the individual and combined application of HA and biofertilizer can positively influence corn and cannabis growth most likely due to their plant biostimulant effects. However, the current study cannot conclusively affirm that the integrated use of HA and biofertilizers following the IPNS is a superior practice than the application of each compound individually and further studies should be conducted to validate these findings.
- An integrated plant nutrition system (IPNS) for corn in the Mid-Atlantic USADa Cunha Leme Filho, Jose Franco; Thomason, Wade E.; Evanylo, Gregory K.; Zhang, Xunzhong; Strickland, Michael S.; Chim, Bee K.; Diatta, Andre A. (2021-03-16)Current trends in agriculture have moved toward more sustainable cultivation systems with higher efficiency of input use. A variety of materials, derived from different resources, can serve as a crop nutrient sources. An Integrated Plant Nutrition System (IPNS) uses the combined and harmonious use of inorganic, organic and biological nutrient resources to maximize efficiency of inputs. We evaluated the effects of commercial nitrogen (N) fertilizer, humic acid compounds (HA), compost/manure teas and bioinoculants as inorganic, organic and biological resources, respectively and their synergy over three years on corn (Zea mays L.) in the Mid-Atlantic USA. The individual and combined application of HA and biofertilizer following the IPNS influenced corn height and leaf greenness to varying degrees, most likely due to biostimulant effects. In 2017, corn height, NDVI, greenness and vigor responded positively to biostimulant application to varying magnitudes and growth stages, however grain yield and nutrient content were not affected. In combined studies from 2018 and 2019 corn height was not impacted by biostimulant application but NDVI, photosynthetic efficiency, greenness and vigor were increased at different doses and corn growth stages. The combined use of HA + biofertilizer (Microlife Humic + Microgeo) was the only treatment leading to increased grain yield. This study demonstrates that the individual and combined application of HA and biofertilizer can influence corn growth and vigor at various points during the growing season. However, the current study cannot conclusively confirm that the integrated use of HA and biofertilizers (IPNS) is a better practice than the application of each compound individually.
- MicroRNA164 Affects Plant Responses to UV Radiation in Perennial RyegrassXu, Chang; Huang, Xin; Ma, Ning; Liu, Yanrong; Xu, Aijiao; Zhang, Xunzhong; Li, Dayong; Li, Yue; Zhang, Wanjun; Wang, Kehua (MDPI, 2024-04-30)Increasing the ultraviolet radiation (UV) level, particularly UV-B due to damage to the stratospheric ozone layer by human activities, has huge negative effects on plant and animal metabolism. As a widely grown cool-season forage grass and turfgrass in the world, perennial ryegrass (Lolium perenne) is UV-B-sensitive. To study the effects of miR164, a highly conserved microRNA in plants, on perennial ryegrass under UV stress, both OsmiR164a overexpression (OE164) and target mimicry (MIM164) transgenic perennial ryegrass plants were generated using agrobacterium-mediated transformation, and UV-B treatment (~600 μw cm−2) of 7 days was imposed. Morphological and physiological analysis showed that the miR164 gene affected perennial ryegrass UV tolerance negatively, demonstrated by the more scorching leaves, higher leaf electrolyte leakage, and lower relative water content in OE164 than the WT and MIM164 plants after UV stress. The increased UV sensitivity could be partially due to the reduction in antioxidative capacity and the accumulation of anthocyanins. This study indicated the potential of targeting miR164 and/or its targeted genes for the genetic manipulation of UV responses in forage grasses/turfgrasses; further research to reveal the molecular mechanism underlying how miR164 affects plant UV responses is needed.
- De novo transcriptome in roots of switchgrass (Panicum virgatum L.) reveals gene expression dynamic and act network under alkaline salt stressZhang, Pan; Duo, Tianqi; Wang, Fengdan; Zhang, Xunzhong; Yang, Zouzhuan; Hu, Guofu (2021-01-28)Background Soil salinization is a major limiting factor for crop cultivation. Switchgrass is a perennial rhizomatous bunchgrass that is considered an ideal plant for marginal lands, including sites with saline soil. Here we investigated the physiological responses and transcriptome changes in the roots of Alamo (alkaline-tolerant genotype) and AM-314/MS-155 (alkaline-sensitive genotype) under alkaline salt stress. Results Alkaline salt stress significantly affected the membrane, osmotic adjustment and antioxidant systems in switchgrass roots, and the ASTTI values between Alamo and AM-314/MS-155 were divergent at different time points. A total of 108,319 unigenes were obtained after reassembly, including 73,636 unigenes in AM-314/MS-155 and 65,492 unigenes in Alamo. A total of 10,219 DEGs were identified, and the number of upregulated genes in Alamo was much greater than that in AM-314/MS-155 in both the early and late stages of alkaline salt stress. The DEGs in AM-314/MS-155 were mainly concentrated in the early stage, while Alamo showed greater advantages in the late stage. These DEGs were mainly enriched in plant-pathogen interactions, ubiquitin-mediated proteolysis and glycolysis/gluconeogenesis pathways. We characterized 1480 TF genes into 64 TF families, and the most abundant TF family was the C2H2 family, followed by the bZIP and bHLH families. A total of 1718 PKs were predicted, including CaMK, CDPK, MAPK and RLK. WGCNA revealed that the DEGs in the blue, brown, dark magenta and light steel blue 1 modules were associated with the physiological changes in roots of switchgrass under alkaline salt stress. The consistency between the qRT-PCR and RNA-Seq results confirmed the reliability of the RNA-seq sequencing data. A molecular regulatory network of the switchgrass response to alkaline salt stress was preliminarily constructed on the basis of transcriptional regulation and functional genes. Conclusions Alkaline salt tolerance of switchgrass may be achieved by the regulation of ion homeostasis, transport proteins, detoxification, heat shock proteins, dehydration and sugar metabolism. These findings provide a comprehensive analysis of gene expression dynamic and act network induced by alkaline salt stress in two switchgrass genotypes and contribute to the understanding of the alkaline salt tolerance mechanism of switchgrass and the improvement of switchgrass germplasm.
- Photosynthetic Rate and Root Growth Responses to Ascophyllum nodosum Extract–based Biostimulant in Creeping Bentgrass under Heat and Drought StressZhang, Xunzhong; Taylor, Zachary; Goatley, Mike; Wang, Kehua; Brown, Isabel; Kosiarski, Kelly (American Society for Horticultural Science, 2023-08-01)Creeping bentgrass (Agrostis stolonifera) experiences quality decline during summer in the United States transition zone and warmer regions. Various bioproducts have been used to improve creeping bentgrass performance and to mitigate effects of summer stress in the United States transition zone. This 2-year study was carried out to examine if foliar application of seaweed extract (SWE; Ascophyllum nodosum)-based biostimulant UtilizeVR could enhance creeping bentgrass nitrate reductase (NaR) activity, and root viability under heat and drought stress conditions. The UtilizeVR was sprayed biweekly on creeping bentgrass foliage at 0, 29, 58, 87, and 116 mL.m22, with application volume of 815 L.ha22. Two weeks after first application, plants were exposed to heat (35/25◦C, day/night) and drought stress (40% to 50% evapotranspiration replacement) conditions for 42 days in an environment-controlled growth chamber. In general, the abiotic stress caused turf quality reduction. Foliar application of UtilizeVR at 58, 87, and 116 mL.m22 increased turf quality, leaf color ratings, leaf chlorophyll, carotenoid content, and net photosynthetic rate (Pn). UtilizeVR at 58, 87, and 116 mL.m22 increased NaR activity by 26.5%, 16.3%, and 16.3%, respectively, when compared with the control. UtilizeVR at 58, 87, and 116 mL.m22 increased root biomass, root length, surface area (SA), and root volume when compared with the control. UtilizeVR at 58 and 87 mL.m22 improved root viability by 16.3% and 30.9%, respectively, when compared with the control. Our data indicate that the SWE-based biostimulant UtilizeVR improves nitrogen (N) metabolism and root viability. UtilizeVR treatment at 58 mL.m22 biweekly can be considered an effective approach for improving creeping bentgrass performance during summer stress.