Browsing by Author "Zhang, Yu"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- From concept to practice to policy: modeling coupled natural and human systems in lake catchmentsCobourn, Kelly M.; Carey, Cayelan C.; Boyle, Kevin J.; Duffy, Christopher J.; Dugan, Hilary A.; Farrell, Kaitlin J.; Fitchett, Leah Lynn; Hanson, Paul C.; Hart, Julia A.; Henson, Virginia Reilly; Hetherington, Amy L.; Kemanian, Armen R.; Rudstam, Lars G.; Shu, Lele; Soranno, Patricia A.; Sorice, Michael G.; Stachelek, Joseph; Ward, Nicole K.; Weathers, Kathleen C.; Weng, Weizhe; Zhang, Yu (Ecological Society of America, 2018-05-03)Recent debate over the scope of the U.S. Clean Water Act underscores the need to develop a robust body of scientific work that defines the connectivity between freshwater systems and people. Coupled natural and human systems (CNHS) modeling is one tool that can be used to study the complex, reciprocal linkages between human actions and ecosystem processes. Well‐developed CNHS models exist at a conceptual level, but the mapping of these system representations in practice is limited in capturing these feedbacks. This article presents a paired conceptual–empirical methodology for functionally capturing feedbacks between human and natural systems in freshwater lake catchments, from human actions to the ecosystem and from the ecosystem back to human actions. We address extant challenges in CNHS modeling, which arise from differences in disciplinary approach, model structure, and spatiotemporal resolution, to connect a suite of models. In doing so, we create an integrated, multi‐disciplinary tool that captures diverse processes that operate at multiple scales, including land‐management decision‐making, hydrologic‐solute transport, aquatic nutrient cycling, and civic engagement. In this article, we build on this novel framework to advance cross‐disciplinary dialogue to move CNHS lake‐catchment modeling in a systematic direction and, ultimately, provide a foundation for smart decision‐making and policy.
- Integrating fast and slow processes is essential for simulating human-freshwater interactionsWard, Nicole K.; Fitchett, Leah Lynn; Hart, Julia A.; Shu, Lele; Stachelek, Joseph; Weng, Weizhe; Zhang, Yu; Dugan, Hilary A.; Hetherington, Amy L.; Boyle, Kevin J.; Carey, Cayelan C.; Cobourn, Kelly M.; Hanson, Paul C.; Kemanian, Armen R.; Sorice, Michael G.; Weathers, Kathleen C. (Springer, 2019-10-01)Integrated modeling is a critical tool to evaluate the behavior of coupled human–freshwater systems. However, models that do not consider both fast and slow processes may not accurately reflect the feedbacks that define complex systems. We evaluated current coupled human–freshwater system modeling approaches in the literature with a focus on categorizing feedback loops as including economic and/or socio-cultural processes and identifying the simulation of fast and slow processes in human and biophysical systems. Fast human and fast biophysical processes are well represented in the literature, but very few studies incorporate slow human and slow biophysical system processes. Challenges in simulating coupled human–freshwater systems can be overcome by quantifying various monetary and non-monetary ecosystem values and by using data aggregation techniques. Studies that incorporate both fast and slow processes have the potential to improve complex system understanding and inform more sustainable decision-making that targets effective leverage points for system change.
- Lake thermal structure drives interannual variability in summer anoxia dynamics in a eutrophic lake over 37 yearsLadwig, Robert; Hanson, Paul C.; Dugan, Hilary A.; Carey, Cayelan C.; Zhang, Yu; Shu, Lele; Duffy, Christopher J.; Cobourn, Kelly M. (2021-02-25)The concentration of oxygen is fundamental to lake water quality and ecosystem functioning through its control over habitat availability for organisms, redox reactions, and recycling of organic material. In many eutrophic lakes, oxygen depletion in the bottom layer (hypolimnion) occurs annually during summer stratification. The temporal and spatial extent of summer hypolimnetic anoxia is determined by interactions between the lake and its external drivers (e.g., catchment characteristics, nutrient loads, meteorology) as well as internal feedback mechanisms (e.g., organic matter recycling, phytoplankton blooms). How these drivers interact to control the evolution of lake anoxia over decadal timescales will determine, in part, the future lake water quality. In this study, we used a vertical one-dimensional hydrodynamic-ecological model (GLM-AED2) coupled with a calibrated hydrological catchment model (PIHM-Lake) to simulate the thermal and water quality dynamics of the eutrophic Lake Mendota (USA) over a 37 year period. The calibration and validation of the lake model consisted of a global sensitivity evaluation as well as the application of an optimization algorithm to improve the fit between observed and simulated data. We calculated stability indices (Schmidt stability, Birgean work, stored internal heat), identified spring mixing and summer stratification periods, and quantified the energy required for stratification and mixing. To qualify which external and internal factors were most important in driving the interannual variation in summer anoxia, we applied a random-forest classifier and multiple linear regressions to modeled ecosystem variables (e.g., stratification onset and offset, ice duration, gross primary production). Lake Mendota exhibited prolonged hypolimnetic anoxia each summer, lasting between 50-60 d. The summer heat budget, the timing of thermal stratification, and the gross primary production in the epilimnion prior to summer stratification were the most important predictors of the spatial and temporal extent of summer anoxia periods in Lake Mendota. Interannual variability in anoxia was largely driven by physical factors: earlier onset of thermal stratification in combination with a higher vertical stability strongly affected the duration and spatial extent of summer anoxia. A measured step change upward in summer anoxia in 2010 was unexplained by the GLM-AED2 model. Although the cause remains unknown, possible factors include invasion by the predacious zooplankton Bythotrephes longimanus. As the heat budget depended primarily on external meteorological conditions, the spatial and temporal extent of summer anoxia in Lake Mendota is likely to increase in the near future as a result of projected climate change in the region.
- Predicting lake surface water phosphorus dynamics using process-guided machine learningHanson, Paul C.; Stillman, Aviah B.; Jia, Xiaowei; Karpatne, Anuj; Dugan, Hilary A.; Carey, Cayelan C.; Stachelek, Joseph; Ward, Nicole K.; Zhang, Yu; Read, Jordan S.; Kumar, Vipin (2020-08-15)Phosphorus (P) loading to lakes is degrading the quality and usability of water globally. Accurate predictions of lake P dynamics are needed to understand whole-ecosystem P budgets, as well as the consequences of changing lake P concentrations for water quality. However, complex biophysical processes within lakes, along with limited observational data, challenge our capacity to reproduce short-term lake dynamics needed for water quality predictions, as well as long-term dynamics needed to understand broad scale controls over lake P. Here we use an emerging paradigm in modeling, process-guided machine learning (PGML), to produce a phosphorus budget for Lake Mendota (Wisconsin, USA) and to accurately predict epilimnetic phosphorus over a time range of days to decades. In our implementation of PGML, which we term a Process-Guided Recurrent Neural Network (PGRNN), we combine a process-based model for lake P with a recurrent neural network, and then constrain the predictions with ecological principles. We test independently the process-based model, the recurrent neural network, and the PGRNN to evaluate the overall approach. The process-based model accounted for most of the observed pattern in lake P; however it missed the long-term trend in lake P and had the worst performance in predicting winter and summer P in surface waters. The root mean square error (RMSE) for the process-based model, the recurrent neural network, and the PGRNN was 33.0 mu g P L-1, 22.7 mu g P L-1, and 20.7 mu g P L-1, respectively. All models performed better during summer, with RMSE values for the three models (same order) equal to 14.3 mu g P L-1, 10.9 mu g P L-1, and 10.7 mu g P L-1. Although the PGRNN had only marginally better RMSE during summer, it had lower bias and reproduced long-term decreases in lake P missed by the other two models. For all seasons and all years, the recurrent neural network had better predictions than process alone, with root mean square error (RMSE) of 23.8 mu g P L-1 and 28.0 mu g P L-1, respectively. The output of PGRNN indicated that new processes related to water temperature, thermal stratification, and long term changes in external loads are needed to improve the process model. By using ecological knowledge, as well as the information content of complex data, PGML shows promise as a technique for accurate prediction in messy, real-world ecological dynamics, while providing valuable information that can improve our understanding of process.
- Quantum self-consistent equation-of-motion method for computing molecular excitation energies, ionization potentials, and electron affinities on a quantum computerAsthana, Ayush; Kumar, Ashutosh; Abraham, Vibin; Grimsley, Harper; Zhang, Yu; Cincio, Lukasz; Tretiak, Sergei; Dub, Pavel A.; Economou, Sophia E.; Barnes, Edwin Fleming; Mayhall, Nicholas J. (Royal Society Chemistry, 2023-01-27)Near-term quantum computers are expected to facilitate material and chemical research through accurate molecular simulations. Several developments have already shown that accurate ground-state energies for small molecules can be evaluated on present-day quantum devices. Although electronically excited states play a vital role in chemical processes and applications, the search for a reliable and practical approach for routine excited-state calculations on near-term quantum devices is ongoing. Inspired by excited-state methods developed for the unitary coupled-cluster theory in quantum chemistry, we present an equation-of-motion-based method to compute excitation energies following the variational quantum eigensolver algorithm for ground-state calculations on a quantum computer. We perform numerical simulations on H-2, H-4, H2O, and LiH molecules to test our quantum self-consistent equation-of-motion (q-sc-EOM) method and compare it to other current state-of-the-art methods. q-sc-EOM makes use of self-consistent operators to satisfy the vacuum annihilation condition, a critical property for accurate calculations. It provides real and size-intensive energy differences corresponding to vertical excitation energies, ionization potentials and electron affinities. We also find that q-sc-EOM is more suitable for implementation on NISQ devices as it is expected to be more resilient to noise compared with the currently available methods.