Browsing by Author "Zhang, Zhonghua"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Construction of Reference Chromosome-Scale Pseudomolecules for Potato: Integrating the Potato Genome with Genetic and Physical MapsSharma, Sanjeev Kumar; Bolser, Daniel; de Boer, Jan; Sonderkaer, Mads; Amoros, Walter; Carboni, Martin Federico; D'Ambrosio, Juan Martin; de la Cruz, German; Di Genova, Alex; Douches, David S.; Eguiluz, Maria; Guo, Xiao; Guzman, Frank; Hackett, Christine A.; Hamilton, John P.; Li, Guangcun; Li, Ying; Lozano, Roberto; Maass, Alejandro; Marshall, David; Martinez, Diana; McLean, Karen; Mejia, Nilo; Milne, Linda; Munive, Susan; Nagy, Istvan; Ponce, Olga; Ramirez, Manuel; Simon, Reinhard; Thomson, Susan J.; Torres, Yerisf; Waugh, Robbie; Zhang, Zhonghua; Huang, Sanwen; Visser, Richard G. F.; Bachem, Christian W. B.; Sagredo, Boris; Feingold, Sergio E.; Orjeda, Gisella; Veilleux, Richard E.; Bonierbale, Merideth; Jacobs, Jeanne M. E.; Milbourne, Dan; Martin, David Michael Alan; Bryan, Glenn J. (Genetics Society of America, 2013-11)The genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker-based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new similar to 936 cM linkage map comprising 2469 marker loci. In silico anchoring approaches used genetic and physical maps from the diploid potato genotype RH89-039-16 (RH) and tomato. This combined approach has allowed 951 superscaffolds to be ordered into pseudomolecules corresponding to the 12 potato chromosomes. These pseudomolecules represent 674 Mb (similar to 93%) of the 723 Mb genome assembly and 37,482 (similar to 96%) of the 39,031 predicted genes. The superscaffold order and orientation within the pseudomolecules are closely collinear with independently constructed high density linkage maps. Comparisons between marker distribution and physical location reveal regions of greater and lesser recombination, as well as regions exhibiting significant segregation distortion. The work presented here has led to a greatly improved ordering of the potato reference genome superscaffolds into chromosomal pseudomolecules.
- Transcriptome sequencing and comparative analysis of cucumber flowers with different sex typesGuo, Shaogui; Zheng, Yi; Joung, Je-Gun; Liu, Shiqiang; Zhang, Zhonghua; Crasta, Oswald R.; Sobral, Bruno; Xu, Yong; Huang, Sanwen; Fei, Zhangjun (2010-06-17)Background Cucumber, Cucumis sativus L., is an economically and nutritionally important crop of the Cucurbitaceae family and has long served as a primary model system for sex determination studies. Recently, the sequencing of its whole genome has been completed. However, transcriptome information of this species is still scarce, with a total of around 8,000 Expressed Sequence Tag (EST) and mRNA sequences currently available in GenBank. In order to gain more insights into molecular mechanisms of plant sex determination and provide the community a functional genomics resource that will facilitate cucurbit research and breeding, we performed transcriptome sequencing of cucumber flower buds of two near-isogenic lines, WI1983G, a gynoecious plant which bears only pistillate flowers, and WI1983H, a hermaphroditic plant which bears only bisexual flowers. Result Using Roche-454 massive parallel pyrosequencing technology, we generated a total of 353,941 high quality EST sequences with an average length of 175bp, among which 188,255 were from gynoecious flowers and 165,686 from hermaphroditic flowers. These EST sequences, together with ~5,600 high quality cucumber EST and mRNA sequences available in GenBank, were clustered and assembled into 81,401 unigenes, of which 28,452 were contigs and 52,949 were singletons. The unigenes and ESTs were further mapped to the cucumber genome and more than 500 alternative splicing events were identified in 443 cucumber genes. The unigenes were further functionally annotated by comparing their sequences to different protein and functional domain databases and assigned with Gene Ontology (GO) terms. A biochemical pathway database containing 343 predicted pathways was also created based on the annotations of the unigenes. Digital expression analysis identified ~200 differentially expressed genes between flowers of WI1983G and WI1983H and provided novel insights into molecular mechanisms of plant sex determination process. Furthermore, a set of SSR motifs and high confidence SNPs between WI1983G and WI1983H were identified from the ESTs, which provided the material basis for future genetic linkage and QTL analysis. Conclusion A large set of EST sequences were generated from cucumber flower buds of two different sex types. Differentially expressed genes between these two different sex-type flowers, as well as putative SSR and SNP markers, were identified. These EST sequences provide valuable information to further understand molecular mechanisms of plant sex determination process and forms a rich resource for future functional genomics analysis, marker development and cucumber breeding.