Browsing by Author "Zhao, Chengsong"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Amino Acids Are an Ineffective Fertilizer for Dunaliella spp. GrowthMurphree, Colin A.; Dums, Jacob T.; Jain, Siddharth K.; Zhao, Chengsong; Young, Danielle Y.; Khoshnoodi, Nicole; Tikunov, Andrey; Macdonald, Jeffrey; Pilot, Guillaume; Sederoff, Heike (Frontiers, 2017-05-26)Autotrophic microalgae are a promising bioproducts platform. However, the fundamental requirements these organisms have for nitrogen fertilizer severely limit the impact and scale of their cultivation. As an alternative to inorganic fertilizers, we investigated the possibility of using amino acids from deconstructed biomass as a nitrogen source in the genus Dunaliella. We found that only four amino acids (glutamine, histidine, cysteine, and tryptophan) rescue Dunaliella spp. growth in nitrogen depleted media, and that supplementation of these amino acids altered the metabolic profile of Dunaliella cells. Our investigations revealed that histidine is transported across the cell membrane, and that glutamine and cysteine are not transported. Rather, glutamine, cysteine, and tryptophan are degraded in solution by a set of oxidative chemical reactions, releasing ammonium that in turn supports growth. Utilization of biomass-derived amino acids is therefore not a suitable option unless additional amino acid nitrogen uptake is enabled through genetic modifications of these algae.
- Arabidopsis UMAMIT24 and 25 are amino acid exporters involved in seed loadingBesnard, Julien; Zhao, Chengsong; Avice, Jean-Christophe; Vitha, Stanislav; Hyodo, Ayumi; Pilot, Guillaume; Okumoto, Sakiko (Oxford University Press, 2018-10-12)Phloem-derived amino acids are the major source of nitrogen supplied to developing seeds. Amino acid transfer from the maternal to the filial tissue requires at least one cellular export step from the maternal tissue prior to the import into the symplasmically isolated embryo. Some members of UMAMIT (usually multiple acids move in an out transporter) family (UMAMIT11, 14, 18, 28, and 29) have previously been implicated in this process. Here we show that additional members of the UMAMIT family, UMAMIT24 and UMAMIT25, also function in amino acid transfer in developing seeds. Using a recently published yeast-based assay allowing detection of amino acid secretion, we showed that UMAMIT24 and UMAMIT25 promote export of a broad range of amino acids in yeast. In plants, UMAMIT24 and UMAMIT25 are expressed in distinct tissues within developing seeds; UMAMIT24 is mainly expressed in the chalazal seed coat and localized on the tonoplast, whereas the plasma membrane-localized UMAMIT25 is expressed in endosperm cells. Seed amino acid contents of umamit24 and umamit25 knockout lines were both decreased during embryogenesis compared with the wild type, but recovered in the mature seeds without any deleterious effect on yield. The results suggest that UMAMIT24 and 25 play different roles in amino acid translocation from the maternal to filial tissue; UMAMIT24 could have a role in temporary storage of amino acids in the chalaza, while UMAMIT25 would mediate amino acid export from the endosperm, the last step before amino acids are taken up by the developing embryo.
- Detailed characterization of the UMAMIT proteins provides insight into their evolution, amino acid transport properties, and role in the plantZhao, Chengsong; Pratelli, Rejane; Yu, Shi; Shelley, Brett; Collakova, Eva; Pilot, Guillaume (Oxford University Press, 2021-09-30)Amino acid transporters play a critical role in distributing amino acids within the cell compartments and between plant organs. Despite this importance, relatively few amino acid transporter genes have been characterized and their role elucidated with certainty. Two main families of proteins encode amino acid transporters in plants: the amino acid-polyamine-organocation superfamily, containing mostly importers, and the UMAMIT (usually multiple acids move in and out transporter) family, apparently encoding exporters, totaling 63 and 44 genes in Arabidopsis, respectively. Knowledge of UMAMITs is scarce, based on six Arabidopsis genes and a handful of genes from other species. To gain insight into the role of the members of this family and provide data to be used for future characterization, we studied the evolution of the UMAMITs in plants, and determined the functional properties, the structure, and localization of the 47 Arabidopsis UMAMITs. Our analysis showed that the AtUMAMITs are essentially localized at the tonoplast or the plasma membrane, and that most of them are able to export amino acids from the cytosol, confirming a role in intra- and intercellular amino acid transport. As an example, this set of data was used to hypothesize the role of a few AtUMAMITs in the plant and the cell.
- Identifying and characterizing genes that regulate vascular tissue-specific functionsZhao, Chengsong (Virginia Tech, 2005-06-03)Vascular tissues provide both the mechanical support to the plant body and the conducting cells for the transport of water, mineral solutes, hormones and other signaling molecules, amino acids, and sugars. To identify genes that may regulate vascular tissue-specific functions, we isolated xylem, phloem-cambium, and nonvascular tissues from the Arabidopsis root-hypocotyl, performed a genome-wide comparative analysis of tissue-specific transcripts using the 24K Affymetrix Arabidopsis ATH1 Genome Array (24K GeneChip), and identified potential genes that are required for xylem and phloem differentiation or tissue-specific functions. Based on this comparative analysis, two phloem-specific G2-like transcription factors, MYR1 and MYR2, and a xylem-specific NAC domain family member, XND1, were selected for further characterization. Under continuous light, myr2 plants flowered early, while myr1 plants did not differ significantly from wild type controls. However, double mutant myr1myr2 plants exhibited a novel phenotype characterized by elongated petioles, semi-erect leaf orientation, and suppression of lateral shoot outgrowth. These characteristics are reminiscent of yucca, a dominant Arabidopsis mutant with elevated levels of free auxin. Preliminary results indicated that like yucca, myr1myr2 plants were more resistant than wt plants to 5-mT, a toxic tryptophan analog, suggesting that MYR1 and MYR2 may be involved in regulating tryptophan-dependent auxin biosynthesis. Overexpression of any one of MYR1 isoforms resulted in a phenotype that in some cases resembled that observed in the double mutant, indicating that the regulation mediated by MYR1 and MYR2 may depend on formation of specific heterodimers consisting of isoforms of MYR1 and/or MYR2, and that the dimerization was susceptible to disruption both by overexpression and loss-of-function of MYR1/MYR2. Overexpression of XND1 resulted in the absence of TEs as determined from the absence of both secondary cell wall deposition and TE death. Using 3 tissue-specific promoter-GUS lines as genetic backgrounds, we demonstrated that overexpression of XND1 suppressed only TE-specific GUS expression but not phloem-specific GUS expression. Three T-DNA/transposon insertion lines, xnd1-1, -2, and -3, were identified. Under normal conditions, xnd1 did not exhibit significantly different growth and development compared to wild type plants. However, preliminary data indicated that xnd1 plants were ABA and cold hypersensitive. Yeast-two hybrid screening using the N-terminal portion of XND1 as bait identified a novel RING finger protein, At3g62970 that may function as the ubiquitin ligase (E3). These results suggested that XND1 functions as a negative regulator of xylem cell differentiation, and that the regulation mediated by XND1 may be integrated with the ubiquitin/26S proteasome pathway.
- Populus biomass protein-protein interactions and their functionsJia, Xiaoyan; Zhao, Mingzhe; Zhao, Chengsong; Sheng, Xiaoyan; Dickerman, Allan; Beers, Eric P.; Brunner, Amy M. (2011-09-13)