Browsing by Author "Zhao, Qian"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Arsenic and nutrient absorption characteristics and antioxidant response in different leaves of two ryegrass (Lolium perenne) species under arsenic stressLi, Jinbo; Zhao, Qian; Xue, Bohan; Wu, Hongyan; Song, Guilong; Zhang, Xunzhong (PLoS, 2019-11-27)Arsenic (As), a heavy metal element, causes soil environmental concerns in many parts of the world, and ryegrass has been considered as an effective plant species for bioremediation of heavy metal pollution including As. This study was designed to investigate As content, nutrient absorption and antioxidant enzyme activity associated with As tolerance in the mature leaves, expanded leaves and emerging leaves of perennial ryegrass (Lolium perenne) and annual ryegrass (Lolium multiflorum) under 100 mgkg-1 As treatment. The contents of As, calcium (Ca), magnesium (Mg), manganese (Mn) in the leaves of both ryegrass species were greatest in the mature leaves and least in the emerging leaves. The nitrogen (N), phosphorus (P), potassium (K) contents of both ryegrass species were greatest in the emerging leaves and least in the mature leaves. The As treatment reduced biomass more in the mature leaves and expanded leaves relative to the emerging leaves for annual ryegrass and reduced more in emerging leaves relative to the mature and expanded leaves for perennial ryegrass. Perennial ryegrass had higher As content than annual ryegrass in all three kinds of leaves. The As treatment increased hydrogen peroxide (H2O2) in expanded leaves of two ryegrass species, relative to the control. The As treatment increased the ascorbate peroxidase (APX) activity in the expanded leaves of perennial ryegrass and the mature leaves of annual ryegrass, the catalase (CAT) activity in the mature and expanded leaves of perennial ryegrass and the emerging leaves of annual ryegrass, relative to the control. The As treatment reduced peroxidase (POD) activity in all three kinds of leaves of annual ryegrass and superoxide dismutase (SOD) activity in expanded leaves of perennial ryegrass, relative to the control. The results of this study suggest that As tolerance may vary among different ages of leaf and reactive oxygen species (ROS) and antioxidant enzyme activity may be associated with As tolerance in the ryegrass.
- Development of a Novel Piezoelectric Sensing System for Pavement Dynamic Load IdentificationZhao, Qian; Wang, Linbing; Zhao, Kang; Yang, Hailu (MDPI, 2019-10-28)In order to control the adverse effect of vehicles overloading infrastructure and traffic safety, weight-in-motion (WIM)-related research has drawn growing attention. To address the high cost of current piezoelectric sensors in installation and maintenance, a study on developing a low-cost piezoceramic sensing system is presented in this paper. The proposed system features distributed monitoring and integrated packaging, for calculating vehicle’s dynamic load and its wheel position. Results from the laboratory tests show that the total output of the sensing system increases linearly with the increase of the peak load when the loading amplitude is 5–25 kN (equivalent to the half-axis load of 20–100 kN); when the loading frequency is between 15 Hz and 19 Hz (equivalent to a speed of 17.8–23.2 km/h), the total output of the system fluctuates around a value of 1.305 V. Combined with finite-element simulation, the system can locate load lateral position with a resolution of 120 mm. Due to the protection packaging, the peak load transferred to the sensing units is approximately 4.36% of the applied peak load. The study indicates the proposed system can provide a promising low-cost, reliable and practical alternative for current WIM systems.
- Numerical Analysis of Signal Response Characteristic of Piezoelectric Energy Harvesters Embedded in PavementYang, Hailu; Zhao, Qian; Guo, Xueli; Zhang, Weidong; Liu, Pengfei; Wang, Linbing (MDPI, 2020-06-18)Piezoelectric pavement energy harvesting is a technological approach to transform mechanical energy into electrical energy. When a piezoelectric energy harvester (PEH) is embedded in asphalt pavements or concrete pavements, it is subjected to traffic loads and generates electricity. The wander of the tire load and the positioning of the PEH affect the power generation; however, they were seldom comprehensively investigated until now. In this paper, a numerical study on the influence of embedding depth of the PEH and the horizontal distance between a tire load and the PEH on piezoelectric power generation is presented. The result shows that the relative position between the PEH and the load influences the voltage magnitude, and different modes of stress state change voltage polarity. Two mathematic correlations between the embedding depth, the horizontal distance, and the generated voltage were fitted based on the computational results. This study can be used to estimate the power generation efficiency, and thus offer basic information for further development to improve the practical design of PEHs in an asphalt pavement.