Browsing by Author "Zhao, Wei"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Buckling Analysis and Optimization of Stiffened Variable Angle Tow Laminates with a Cutout Considering Manufacturing ConstraintsZhao, Wei; Kapania, Rakesh K. (MDPI, 2022-03-04)Variable angle tow laminates (VAT) and stiffeners are known to redistribute the in-plane load distribution and tailor the buckling mode shapes, respectively, for improving structural performance. To leverage the benefits of using VAT laminates in the practical applications, in the present paper, we discuss buckling load maximization conducted for a stiffened VAT laminated plate with a central cutout considering VAT laminate manufacturing constraints. Three representative boundary conditions as seen in the aerospace structures are considered: in-plane axial displacement, in-plane pure shear, and in-plane pure bending displacements. Two common manufacturing constraints, the one on the automatic fiber placement (AFP) manufacturing head turning radius and the other on the tow gap/overlap, while fabricating VAT laminates are considered in the laminate design. These two manufacturing constraints are modeled by controlling the fiber path radius of curvature and tape parallelism in optimizing the fiber path orientations for the VAT laminates. Stiffener layout and fiber path angle for the VAT laminated plates are both considered in the buckling load maximization study. To avoid using a fine mesh in modeling the stiffened VAT laminates with a cutout when employing the finite element analysis during the optimization, the VAT laminated plate and the stiffeners are modeled independently. The displacement compatibility is enforced at the stiffener–plate interfaces to ensure that the stiffeners move with the plate. Particle swarm optimization is used as the optimization algorithm for the buckling load maximization study. Optimization results show that, without considering AFP manufacturing constraints, the VAT laminates can increase the buckling loads by 21.2% and 12.4%, respectively, comparing to the commonly used quasi-isotropic laminates and traditionally straight fiber path laminates for the structure under the in-plane axial displacement case, 19.7% and 12.5%, respectively, for the in-plane shear displacement case, and 62.1% and 26.6%, respectively, for the in-plane bending displacement case. The AFP manufacturing constraints are found to have different impacts on the buckling responses for the VAT laminates, which cause the maximum buckling load to be 9.3–10.1%, 3.0–3.2%, and 23.2–29.8% less than those obtained without considering AFP manufacturing constraints, respectively, for the present studied model under in-plane axial, shear, and bending displacements.
- Defining farm-safety research priorities and adjusting farm insurance premiums by a risk analysis approachZhao, Wei (Virginia Tech, 1992)A risk analysis approach for farm work-related injuries was proposed. For this study, risk is defined as the Expected Injury Cost (EIC) index per farm worker per year. Four steps are involved in the risk assessment analysis of farm injuries: (1) determination of risk factors, (2) injury severity classification, (3) cost estimation, and (4) risk characterization. Farm variables were examined to determine their influences on the rates of occurrence as well as the severity of injuries. Farm injuries were correlated with the risk factors of employment status, gender of farm worker, age of farm worker, hours of exposure, type of agricultural operation, and various hazardous conditions on a farm. By combining the probability of injuries due to a particular risk factor with the estimated costs of injuries, the EIC indices were derived for farm workers and activities. Agricultural safety education and research priorities were defined based upon the risk model developed in this study. A sensitivity analysis was conducted to determine the impact of the assumptions on the research priorities established. It was found that the research priorities were not affected by the uncertainty on the magnitude of injury costs and other variables used in this study. The risk-based approach can also provide input to farm insurance ratings. By combining the EIC index for each worker with the number of workers employed on a farm, a composite risk factor could be obtained for the farm enterprise. This composite risk factor can be used as a basis for adjusting farm insurance premiums. Adjustment of insurance premiums or related benefits could be used as an economic incentive to encourage adoption of safer farming practices so that preventable farm accidents and human suffering can be reduced. Other potential applications of the risk model presented in this study include safety management and loss control for a farm enterprise, and serving as a guide for the systematic collection of farm injury data.
- Development of a low-cost flutter test bed with an EPS foam model for preliminary wing designSanmugadas, Varakini; Miglani, Jitish; Zhao, Wei; Desai, Siddhant; Schetz, Joseph A.; Kapania, Rakesh K. (Elsevier France-Editions Scientifiques Medicales Elsevier, 2024-07)This paper discusses a novel, low-cost approach for the design and testing of a flutter test article made out of expanded polystyrene (EPS) foam. The low mass of this test article makes it especially suitable for serving as a test bed for similar low structure-to-fluid mass ratio wing configurations, though it could just as easily be used as the first step in the flutter testing of any structure with complex shape and mechanical properties. The material properties of EPS foam were tested using two different approaches: a 3-point bending test based on ASTM Standards for cellular materials and a new finite element model updating approach that used experimental data collected from simple ground vibration tests (GVT). It was found that the second approach provided material properties that were the most representative of the behavior of the specimen under flutter loads. That information was then used in a computational aeroelastic flutter model of the EPS foam wing. Wind tunnel flutter tests were performed for the EPS foam model. The computational frequency domain decomposition (CFDD) method was used to identify modal parameters and the damping trend extrapolating method was used to predict the critical flutter speed from pre-flutter experimental data. The flutter results from the aeroelastic model were in good agreement with the test data.
- Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in miceWang, Jun; Hodes, Georgia E.; Zhang, Hongxing; Zhang, Song; Zhao, Wei; Golden, Sam A.; Bi, Weina; Menard, Caroline; Kana, Veronika; Leboeuf, Marylene; Xie, Marc; Bregman, Dana; Pfau, Madeline L.; Flanigan, Meghan E.; Estebam-Fernández, Adelaida; Yemul, Shrishailam; Sharma, Ali; Ho, Lap; Dixon, Richard A.; Merad, Miriam; Han, Ming-Hu; Russo, Scott J.; Pasinetti, Giulio M. (Nature, 2018)Major depressive disorder is associated with abnormalities in the brain and the immune system. Chronic stress in animals showed that epigenetic and inflammatory mechanisms play important roles in mediating resilience and susceptibility to depression. Here, through a highthroughput screening, we identify two phytochemicals, dihydrocaffeic acid (DHCA) and malvidin-3′-O-glucoside (Mal-gluc) that are effective in promoting resilience against stress by modulating brain synaptic plasticity and peripheral inflammation. DHCA/Mal-gluc also significantly reduces depression-like phenotypes in a mouse model of increased systemic inflammation induced by transplantation of hematopoietic progenitor cells from stresssusceptible mice. DHCA reduces pro-inflammatory interleukin 6 (IL-6) generations by inhibiting DNA methylation at the CpG-rich IL-6 sequences introns 1 and 3, while Mal-gluc modulates synaptic plasticity by increasing histone acetylation of the regulatory sequences of the Rac1 gene. Peripheral inflammation and synaptic maladaptation are in line with newly hypothesized clinical intervention targets for depression that are not addressed by currently available antidepressants.
- Optimal Design and Analysis of Bio-inspired, Curvilinearly Stiffened Composite Flexible WingsZhao, Wei (Virginia Tech, 2017-09-19)Large-aspect-ratio wings and composite structures both have been considered for the next-generation civil transport aircraft to achieve improved aerodynamic efficiency and to save aircraft structural weight. The use of the large-aspect-ratio and the light-weight composite wing can lead to an enhanced flexibility of the aircraft wing, which may cause many aeroelastic problems such as large deflections, increased drag, onset of flutter, loss of control authority, etc. Aeroelastic tailoring, internal structural layout design and aerodynamic wing shape morphing are all considered to address these aeroelastic problems through multidisciplinary design, analysis and optimization (MDAO) studies in this work. Performance Adaptive Aeroelastic Wing (PAAW) program was initiated by NASA to leverage the flexibility associated with the use of the large-aspect-ratio wings and light-weight composite structures in a beneficial way for civil transport aircraft wing design. The biologically inspired SpaRibs concept is used for aircraft wing box internal structural layout design to achieve the optimal stiffness distribution to improve the aircraft performance. Along with the use of the active aeroelastic wing concept through morphing wing shape including the wing jig-shape, the control surface rotations and the aeroelastic tailoring scheme using composite laminates with ply-drop for wing skin design, a MDAO framework, which has the capabilities in total structural weight minimization, total drag minimization during cruise, ground roll distance minimization in takeoff and load alleviation in various maneuver loads by morphing its shape, is developed for designing models used in the PAAW program. A bilevel programming (BLP) multidisciplinary design optimization (MDO) architecture is developed for the MDAO framework. The upper-level optimization problem entails minimization of weight, drag and ground roll distance, all subjected to both static constraints and the global dynamic requirements including flutter mode and free vibration modes due to the specified control law design for body freedom flutter suppression and static margin constraint. The lower-level optimization is conducted to minimize the total drag by morphing wing shape, to minimize wing root bending moment by scheduling flap rotations (a surrogate for weight reduction), and to minimize the takeoff ground roll distance. Particle swarm optimization and gradient-based optimization are used, respectively, in the upper-level and the lower-level optimization problems. Optimization results show that the wing box with SpaRibs can further improve the aircraft performances, especially in a large weight saving, as compared to the wing with traditional spars and ribs. Additionally, the nonuniform chord control surface associated with the wing with SpaRibs achieve further reductions in structural weight, total drag and takeoff ground roll distance for an improved aircraft performance. For a further improvement of the global wing skin panel design, an efficient finite element approach is developed in designing stiffened composite panels with arbitrarily shaped stiffeners for buckling and vibration analyses. The developed approach allows the finite element nodes for the stiffeners and panels not to coincide at the panel-stiffeners interfaces. The stiffness, mass and geometric stiffness matrices for the stiffeners can be transformed to those for the panel through the displacement compatibility at their interfaces. The method improves the feasible model used in shape optimizing by avoiding repeated meshing for stiffened plate. Also, it reduces the order of the finite element model, a fine mesh typically associated with the skin panel stiffened by many stiffeners, for an efficient structural analysis. Several benchmark cases have been studied to verify the accuracy of the developed approach for stiffened composite panel structural analyses. Several parametric studies are conducted to show the influence of stiffener shape/placement/depth-ratio on panel's buckling and vibration responses. The developed approach shows a potential benefit of using gradient-based optimization for stiffener shape design.
- Two-Level Weight Optimization of Composite Laminates Using Integer ProgrammingBorwankar, Pranav; Zhao, Wei; Kapania, Rakesh K.; Bansal, Manish (American Institute of Aeronautics and Astronautics, 2022-11-01)Optimization of composite laminates requires the satisfaction of constraints where the design ply thicknesses and orientations can only take discrete values prescribed by the manufacturers. Heuristics such as particle swarm or genetic algorithms are inefficient in such cases because they provide suboptimal solutions when the number of design variables is large. They also are computationally expensive in handling the combinatorial nature of the problem. In contrast, with the help of binary decision variables, mixed integer programming can be adopted to optimize such laminates efficiently. This paper presents an approach to reformulate lamination parameters and failure constraints as functions of binary decision variables. The buckling load maximization for a simply supported laminated plate is initially demonstrated using integer linear programming. Next, the laminate weight is minimized by varying the number of plies for a given external bi-axial compressive load and subjected to buckling and material failure constraints. A variation of laminate weight minimization is demonstrated by fixing the number of plies and assuming discrete changes in ply thicknesses. This is achieved using a sequential two-level optimization for laminates having uniform ply thickness. Finally, a scalability study is performed to evaluate the performance of mixed integer programming for different problem sizes. It is demonstrated that all three formulations with integer programming achieve significant performance gain and robustness over standard heuristic solvers.