Browsing by Author "Zheng, Hanguang"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Die-Attachment on Copper by Nanosilver Sintering: Processing, Characterization and ReliabilityZheng, Hanguang (Virginia Tech, 2015-04-29)Die-attachment, as the first level of electronics packaging, plays a key role for the overall performance of the power electronics packages. Nanosilver sintering has becoming an emerging solder-free, environmental friendly die-attach technology. Researchers have demonstrated the feasibility of die-attachment on silver (Ag) or gold (Au) surfaces by pressure-less or low-pressure (< 5 MPa) nanosilver sintering. This study extended the application of nanosilver sintering die-attach technique to copper (Cu) surface. The main challenge of nanosilver sintering on Cu is the formation of thick Cu oxide during processing, which may lead to weak joints. In this study, different processes were developed based on the die size: for small-area dice (< 5 * 5 mm2), different sintering atmospheres (e.g. forming gas) were applied to protect Cu surface from oxidation; for large-area dice (> 5 * 5 mm2), a double-print, low-pressure (< 5 MPa) assisted sintering process was developed. For both processes, die-shear tests demonstrated die-shear strength can reach 40 MPa. The effects of different sintering parameters of the processing were analyzed by different material characterization techniques. With forming gas as sintering atmosphere, not only Cu surface was protected from oxidation, but also the organics in the paste were degraded with nanosilver particles as catalyst. External pressure applied in the processing not only increased the density of sintered Ag, but also enhanced the contact area of sintered-Ag/Cu interface. Microstructure of Ag/Cu interface were characterized by transmission electron microscopy (TEM). Characterization results indicate that Ag/Cu metallic bonds formed at the interface, which verified the high die-shear strength of the die-attachment. Thermal performance of nanosilver sintered die-attachment on Cu was evaluated. A system was designed and constructed for measuring both transient thermal impedance (Zth) and steady-state thermal resistance (Rth) of insulated gate bipolar transistor (IGBT) packages. The coefficient of variation (CV) of Zth measurement by the system was lower than 0.5%. Lead-free solder (SAC305) was applied in comparison of thermal performance with nanosilver paste. With same sample geometry and heating power level, nanosilver sintered joints on Cu showed in average 12.6% lower Zth and 20.1% lower Rth than SAC305 soldered joints. Great thermal performances of nanosilver sintering die-attachment on Cu were mainly due to the low thermal resistivity of sintered-Ag and the good bonding quality. Both passive temperature cycling and active power cycling tests were conducted to evaluate the reliability of nanosilver sintered joints on Cu. For passive temperature cycling tests (-40 - 125 C), the die-shear strengths of mechanical samples had no significant drop over 1000 cycles, and nanosilver sintered IGBT on Cu packages showed almost no change on Zth after 800 cycles. For active power cycling test (Tj = 45 - 175 C), nanosilver sintered IGBT on Cu assembly had a lifetime over 48,000 cycles. The failure point of the assembly was the detachment of the wirebonds. Great reliability performances of nanosilver sintered die-attachment on Cu were mainly due to the low mismatch of coefficient of thermal expansion (CTE) between sintered-Ag and Cu. Meanwhile, low inter-diffusion rate between Ag and Cu prevented the interface from the reliability issue related to Kirkendall voids, which often took place in tin (Sn) -based solder joints.
- Processing and Properties of Die-attachment on Copper Surface by Low-temperature Sintering of Nanosilver PasteZheng, Hanguang (Virginia Tech, 2012-04-16)As the first level interconnection in electronic packages, chip attachment plays a key role in the total packaging process. Sintered nanosilver paste may be used as a lead-free alternative to solder for die-attachment at sintering temperature below 300 °C without applying any pressure. Typically, the substrate, such as direct bond copper (DBC) substrates, has surface metallization such as silver or gold to protect the copper surface from oxidation during the sintering process. This study focused on developing techniques for die-attachment on pure copper surface by low-temperature sintering of nanosilver paste. One of the difficulties lies in the need for oxygen to burn off the organics in the paste during sintering. However, the copper surface would oxidize, preventing the formation of a strong bond between sintered silver and copper substrate. Two approaches were investigated to develop a feasible technique for attachment. The first approach was to reduce air pressure as a means of varying the oxygen partial pressure and the second approach was to introduce inert gas to control the sintering atmosphere. For the first method, die-shear tests showed that increasing the oxygen partial pressure (PO₂ from 0.04 atm to 0.14 atm caused the bonding strength to increase but eventually decline at higher partial pressure. Scanning electron microscopy (SEM) imaging and energy dispersive spectroscopy (EDS) analysis showed that there was insufficient oxygen for complete organics burnout at low PO₂ condition, while the copper surface was heavily oxidized at high PO₂ levels, thus preventing strong bonding. A maximum bonding strength of about average 8 MPa was attained at about PO₂ = 0.08 atm. With the second method, the die-shear strength showed a significant increase to about 24 MPa by adjusting the oxygen exposure temperature and time during sintering. The processing conditions necessary for bonding large-area chips (6 mm à 6 mm) directly on pure copper surface by sintering nanosilver paste was also investigated. A double-print process with an applied sintering pressure of less than 5 MPa was developed. Die-shear test of the attached chips showed an average bonding strength of over 40 MPa at applied pressure of 3 MPa and over 77 MPa under 12 MPa sintering pressure. SEM imaging of the failure surface showed a much denser microstructure of sintered silver layer when pressure was applied. X-ray imaging showed a bond layer almost free of voids. Because the samples were sintered in air, the DBC surface showed some oxidation. Wirebondability test of the oxidized surface was performed with 250 μm-diameter aluminum wires wedge-bonded at different locations on the oxidized surface. Pull test results of the bonded wires showed a minimum pull-strength of 400 gram-force, exceeding the minimum of 100-gf required by the IPC-TM-650 test standard.