Browsing by Author "Zheng, Hongzhang"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Can long-term historical data from electronic medical records improve surveillance for epidemics of acute respiratory infections? A systematic evaluationZheng, Hongzhang; Woodall, William H.; Carlson, Abigail L.; DeLisle, Sylvain (PLOS, 2018-01-31)Background As the deployment of electronic medical records (EMR) expands, so is the availability of long-term datasets that could serve to enhance public health surveillance. We hypothesized that EMR-based surveillance systems that incorporate seasonality and other long-term trends would discover outbreaks of acute respiratory infections (ARI) sooner than systems that only consider the recent past. Methods We simulated surveillance systems aimed at discovering modeled influenza outbreaks injected into backgrounds of patients with ARI. Backgrounds of daily case counts were either synthesized or obtained by applying one of three previously validated ARI case-detection algorithms to authentic EMR entries. From the time of outbreak injection, detection statistics were applied daily on paired background+injection and background-only time series. The relationship between the detection delay (the time from injection to the first alarm uniquely found in the background+injection data) and the false-alarm rate (FAR) was determined by systematically varying the statistical alarm threshold. We compared this relationship for outbreak detection methods that utilized either 7 days (early aberrancy reporting system (EARS)) or 2 +/- 4 years of past data (seasonal autoregressive integrated moving average (SARIMA) time series modeling). Results In otherwise identical surveillance systems, SARIMA detected epidemics sooner than EARS at any FAR below 10%. The algorithms used to detect single ARI cases impacted both the feasibility and marginal benefits of SARIMA modeling. Under plausible real-world conditions, SARIMA could reduce detection delay by 5 +/- 16 days. It also was more sensitive at detecting the summer wave of the 2009 influenza pandemic. Conclusion Time series modeling of long-term historical EMR data can reduce the time it takes to discover epidemics of ARI. Realistic surveillance simulations may prove invaluable to optimize system design and tuning.
- On Development and Performance Evaluation of Some Biosurveillance MethodsZheng, Hongzhang (Virginia Tech, 2011-07-05)This study examines three applications of control charts used for monitoring syndromic data with different characteristics. The first part develops a seasonal autoregressive integrated moving average (SARIMA) based surveillance chart, and compares it with the CDC Early Aberration Reporting System (EARS) W2c method using both authentic and simulated data. After successfully removing the long-term trend and the seasonality involved in syndromic data, the performance of the SARIMA approach is shown to be better than the performance of the EARS method in terms of two key surveillance characteristics, the false alarm rate and the average time to detect the outbreaks. In the second part, we propose a generalized likelihood ratio (GLR) control chart to detect a wide range of shifts in the mean of Poisson distributed biosurveillance data. The application of a sign function on the original GLR chart statistics leads to downward-sided, upward-sided, and two-sided GLR chart statistics in an unified framework. To facilitate the use of such charts in practice, we provide detailed guidance on developing and implementing the GLR chart. Under the steady-state framework, this study indicates that the overall GLR chart performance in detecting a range of shifts of interest is superior to the performance of traditional control charts including the EARS method, Shewhart charts, EWMA charts, and CUSUM charts. There is often an excessive number of zeros involved in health care related data. Zero-inflated Poisson (ZIP) models are more appropriate than Poisson models to describe such data. The last part of the dissertation considers the GLR chart for ZIP data under a research framework similar to the second part. Because small sample sizes may influence the estimation of ZIP parameters, the efficiency of MLEs is investigated in depth, followed by suggestions for improvement. Numerical approaches to solving for the MLEs are discussed as well. Statistics for a set of GLR charts are derived, followed by modifications changing them from two-sided statistics to one-sided statistics. Although not a complete study of GLR charts for ZIP processes, due to limited time and resources, suggestions for future work are proposed at the end of this dissertation.