Browsing by Author "Zhou, Jinghai"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Bridge-buck converter with self-driven synchronous rectifiers(United States Patent and Trademark Office, 2005-02-22)A non-isolated bridge-buck DC—DC converter has self-driven synchronous rectifiers Q5 Q6 in the buck circuits 28 30. Gate electrodes of the synchronous rectifiers Q5 Q6 are connected to midpoints 24A 24B of the bridge circuit. The voltage at the midpoints provides the necessary voltage waveform for switching the synchronous rectifiers Q5 Q6. In another aspect of the invention, voltage shift circuits 34 are provided between the midpoints and the gates of the synchronous rectifiers. The voltage shift circuits are necessary in some embodiments to make sure that the synchronous rectifiers are turned completely OFF when necessary. The present invention provides a more power efficient and less expensive technique for controlling the synchronous rectifiers compared to conventional external driver circuitry.
- Discharge lamp lighting control device(United States Patent and Trademark Office, 2008-06-24)A discharge lamp lighting control device (100) having a DC power converter, a power factor improving power converter (1), a polarity reversing circuit (2), a starter circuit (3), and a controller (4). The power factor improving power converter 1 includes a switching device S, a power factor improver, and a power converter. The power factor improver operates to smooth a rectified voltage by storing energy in a first inductive device L1 and by discharging energy from a second inductive device L2, in which the first and second inductive devices are magnetically coupled together. The storing and discharging is performed by turning ON and OFF the switching device S. A predetermined DC voltage is converted by energy stored and discharged by a third inductive device L3 in response to the turning ON and OFF of the switching device S.
- High Frequency, High Current Density Voltage RegulatorsZhou, Jinghai (Virginia Tech, 2005-04-22)As a very special DC-DC converter, VRM (Voltage Regulator Module) design must follow the fast-developing trend of microprocessors. The design challenges are the high current, high di/dt, and stringent load-line requirement. When the energy is transferred from the input of a VRM, through the VRM, then through the power delivery path to the processor, it needs sufficient capacitors to relay this energy. The capacitors' number appears to be unrealistically large if we follow today's approach for the future processors. High frequency VRM with high control bandwidth can solve this problem, however, the degradation of efficiency makes the conventional buck converter and the hard-switching isolated topologies incapable of operating at higher frequency. The research goal is to develop novel means that can help a high-output- current VRM run efficiently at high frequency. A novel Complementary Controlled Bridge (CCB) self-driven concept is proposed. With the proposed self-driven scheme, the combination of the ZVS technique and the self-driven technique recycles the gate driving energy by making use of the input capacitor of the secondary- side synchronous rectifier (SR) as the snubber capacitor of the primary-side switches. Compared to the external driver, the proposed converter can save driving loss and synchronous rectifier body diode conduction loss. Additionally, compared to the existing level-shifted self-driven scheme for bridge-type symmetrical topologies, its gate signal ringing is small and suitable for high-frequency applications. Although the CCB self-driven VRM reduces the switching frequency-related losses significantly, the conduction loss is still high. Inspired by the current-doubler concept, a novel ZVS current-tripler DC-DC converter is proposed in this work. By utilizing more SR devices to share the current during the freewheeling period, the SR conduction loss is reduced. The current-tripler DC-DC converter has a delta/delta connected transformer that can be implemented with integrated magnetics. The transformer then becomes an integrated magnetic with distributed windings, which is preferred in high current applications. The current-tripler DC-DC converter in fact meets the requirements for the CCB self-driven scheme. The two concepts are then combined with an integrated gate drive transformer. The proposed CCB self-driven concept and current-tripler concept can both be applied to the 12V non-isolated VRMs. The proposed topology is basically a buck-derived soft-switching topology with duty cycle extension and SR device self-driven capabilities. Because there is no isolation requirement, the SR gate driving becomes so simple that the voltage at the complementary controlled bridge can be used to directly drive the SR gate. Both the gate driving loss and the SR body diode conduction loss are reduced. The proposed circuit achieves similar overall efficiency to a conventional 300kHz buck converter running at 1MHz. All the circuits proposed in this dissertation can use coupling inductors to improve both the steady-state efficiency and dynamic performances. The essence of the coupling inductors concept is to provide different equivalent inductances for the steady state and the transient. Moreover, when a current loop becomes necessary to achieve proper current sharing among phases, the current loop sample hold effect will make it difficult to push the bandwidth. The sample hold effect is alleviated by the coupling inductors concept. A small-signal model is proposed to study the system dynamic performance difference with different coupling inductor designs. As the verification, the coupling concept is applied to the 12V non-isolated CCB self-driven VRM and the bandwidth as high as one third of the switching frequency is achieved, which means a significant output capacitor reduction.
- Input current sensing AVP method for future VRM(United States Patent and Trademark Office, 2009-10-20)A voltage converter provides a desired voltage droop with load while avoiding output current sensing and active control/feedback circuits and avoiding excessive power dissipation from passive components by placing a sensing resistor in the low current, switched input circuit of the voltage converter. Therefore, the resistor conducts only when a switch controlling voltage conversion is conductive, generally at very low duty cycle and low current.
- Multiphase voltage regulator having coupled inductors with reduced winding resistance(United States Patent and Trademark Office, 2007-04-03)A multiple phase buck converter or boost converter, or buck-boost converter has an inductor in each phase. A magnetic core with a unique woven topology provides inverse coupling between the inductors. The inductors can comprise straight conductors since the magnetic core has the woven topology wrapped around each inductor. The inductors have a reduced electrical resistance since they are straight and do not loop around the magnetic core. The reduced electrical resistance increases energy efficiency and improves transient response of the circuit. The magnetic core can comprise top and bottom portions that are magnetically connected. The inductors can comprise straight circuit board traces and the circuit board can have holes to accommodate the magnetic core.
- Self-driven scheme for synchronous rectifier having no body diode(United States Patent and Trademark Office, 2007-09-04)A voltage converter uses a component such as a JFET or four-terminal power MOSFET having no body diode and exhibiting no body diode conduction characteristic as a synchronous rectifier to reduce switching losses and body diode conduction losses and to support high frequency switching so that use of smaller components and higher current densities can be achieved. These effects are enhanced by a self-driven circuit utilizing positive feedback to enhance switching speed and reduce switching losses which increase with switching frequency.
- Two-stage voltage regulators with adjustable intermediate bus voltage, adjustable switching frequency, and adjustable number of active phases(United States Patent and Trademark Office, 2006-07-04)A two-stage power converter that dynamically adjusts to output current requirements includes a first stage regulator that provides power to a second stage regulator. The first stage can be a buck converter, and the second stage can be a multiple-phase buck converter. The output voltage of the first stage (intermediate bus voltage Vbus) is varied according to the load current to optimize conversion efficiency. To provide maximum efficiency, the Vbus voltage is increased as load current increases. The Vbus voltage provided by the first stage can be varied by duty cycle or operating frequency control. In another embodiment, the switching frequency of the second stage is varied as output current changes so that output current ripple is held constant. In an embodiment employing a multiple-phase buck converter in the second stage, the number of operating phases are varied as output current changes.