Browsing by Author "Zhou, Su-Wei"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Coupled electro-mechanical system modeling and experimental investigation of piezoelectric actuator-driven adaptive structuresZhou, Su-Wei (Virginia Tech, 1994)Of primary importance to the design and application of adaptive structures is a modeling method to allow for performance prediction and parametric optimization of the integrated system. The statics-based modeling approaches have been applied to model piezoelectric (PZT) actuator-driven adaptive structures. The dynamic interaction between the actuators and their host structures has been ignored, and the system energy conversion can’t be predicted. As a matter of fact, PZT actuator-driven smart structures are complex electromechanical coupling systems in which electrical energy is converted into mechanical energy and vice-versa. The actuator outputs and the system energy conversion are dominated by the complex electro-mechanical impedance of the system. The entire actuator/substrate system can thus be essentially represented by a coupled impedance-based system model. This research presents such an impedance-based electro-dynamics analytical method and the experimental investigation for integrated PZT/substrate systems. When compared with the conventional static models, the system modeling method has revealed the physical essence and the interconnections among the intelligent elements and supporting structures. The frequency-dependent behaviors of the actuator and the dynamic response of the integrated system are accurately predicted. The theoretical model was developed for generic PZT actuator-driven active structures. The actuation force was evaluated as a result of the dynamic interaction between the actuator and the host structure. The model was then extended to include the electrical parameters of the PZT actuator such that the power flow and consumption of the integrated system can be predicted. The system dissipative power was then treated as the equivalent generation source to evaluate a temperature rise and thermal damage of the actuator. To examine the utility and generality of the system modeling method, the developed model was applied to typical two-dimensional structures such as thin plates and thin shells, and to one-dimensional structures such as the circular rings and beams. The design-related mechanical and thermal stress characteristics of the actuators were also specifically investigated. In addition to the theoretical work, experiments were conducted. The PZT actuator-driven simply-supported plate was built and tested. The velocity response of the integrated plate and the dynamic strain of the PZT actuators were measured. The coupled electromechanical admittance of the real system was also directly measured using an impedance analyzer. The predicted solutions agree with the experimental results in all of the tested cases, verifying the theoretical model.
- Modeling of distributed piezoelectric actuators integrated with thin cylindrical shellsZhou, Su-Wei; Liang, Chen; Rogers, Craig A. (Acoustical Society of America, 1994-09-01)The dynamic interaction between induced strain piezoelectric (PZT) actuators and their host structures is often ignored in the modeling of intelligent structures. A more realistic investigation of intelligent material systems must account for the dynamic behaviors of integrated actuator/substrate systems. In this paper, a generic method for the dynamic modeling of distributed PZT actuator-driven thin cylindrical shells has been developed using a mechanical impedance approach. The impedance characteristics of a cylinder corresponding to the excitation of a pair of pure bending moments have been developed, from which the dynamic output moments (or forces) of PZT actuators can be accurately predicted. Direct comparisons have been made between a conventional static modeling approach and the impedance method in order to identify the critical differences between these modeling methods for thin cylindrical structures. The case studies demonstrate that the mechanical impedance matching between PZT actuators and host structures has an impact on the output performance of the actuators. The dynamic essence of integrated PZT/substrate systems has thus been revealed.