Browsing by Author "Zhou, Xijie"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Macrophage Activation in the Dorsal Root Ganglion in Rats Developing Autotomy after Peripheral Nerve InjuryXu, Xiang; Zhou, Xijie; Du, Jian; Liu, Xiao; Qing, Liming; Johnson, Blake N.; Jia, Xiaofeng (MDPI, 2021-11-26)Autotomy, self-mutilation of a denervated limb, is common in animals after peripheral nerve injury (PNI) and is a reliable proxy for neuropathic pain in humans. Understanding the occurrence and treatment of autotomy remains challenging. The objective of this study was to investigate the occurrence of autotomy in nude and Wistar rats and evaluate the differences in macrophage activation and fiber sensitization contributing to the understanding of autotomy behavior. Autotomy in nude and Wistar rats was observed and evaluated 6 and 12 weeks after sciatic nerve repair surgery. The numbers of macrophages and the types of neurons in the dorsal root ganglion (DRG) between the two groups were compared by immunofluorescence studies. Immunostaining of T cells in the DRG was also assessed. Nude rats engaged in autotomy with less frequency than Wistar rats. Autotomy symptoms were also relatively less severe in nude rats. Immunofluorescence studies revealed increased macrophage accumulation and activation in the DRG of Wistar rats. The percentage of NF200+ neurons was higher at 6 and 12 weeks in Wistar rats compared to nude rats, but the percentage of CGRP+ neurons did not differ between two groups. Additionally, macrophages were concentrated around NF200-labeled A fibers. At 6 and 12 weeks following PNI, CD4+ T cells were not found in the DRG of the two groups. The accumulation and activation of macrophages in the DRG may account for the increased frequency and severity of autotomy in Wistar rats. Our results also suggest that A fiber neurons in the DRG play an important role in autotomy.
- Therapeutic effects of peripherally administrated neural crest stem cells on pain and spinal cord changes after sciatic nerve transectionZhang, Yang; Xu, Xiang; Tong, Yuxin; Zhou, Xijie; Du, Jian; Choi, In Y.; Yue, Shouwei; Lee, Gabsang; Johnson, Blake N.; Jia, Xiaofeng (2021-03-15)Background Severe peripheral nerve injury significantly affects patients’ quality of life and induces neuropathic pain. Neural crest stem cells (NCSCs) exhibit several attractive characteristics for cell-based therapies following peripheral nerve injury. Here, we investigate the therapeutic effect of NCSC therapy and associated changes in the spinal cord in a sciatic nerve transection (SNT) model. Methods Complex sciatic nerve gap injuries in rats were repaired with cell-free and cell-laden nerve scaffolds for 12 weeks (scaffold and NCSC groups, respectively). Catwalk gait analysis was used to assess the motor function recovery. The mechanical withdrawal threshold and thermal withdrawal latency were used to assess the development of neuropathic pain. Activation of glial cells was examined by immunofluorescence analyses. Spinal levels of extracellular signal-regulated kinase (ERK), NF-κB P65, brain-derived neurotrophic factor (BDNF), growth-associated protein (GAP)-43, calcitonin gene-related peptide (CGRP), and inflammation factors were calculated by western blot analysis. Results Catwalk gait analysis showed that animals in the NCSC group exhibited a higher stand index and Max intensity At (%) relative to those that received the cell-free scaffold (scaffold group) (p < 0.05). The mechanical and thermal allodynia in the medial-plantar surface of the ipsilateral hind paw were significantly relieved in the NCSC group. Sunitinib (SNT)-induced upregulation of glial fibrillary acidic protein (GFAP) (astrocyte) and ionized calcium-binding adaptor molecule 1 (Iba-1) (microglia) in the ipsilateral L4–5 dorsal and ventral horn relative to the contralateral side. Immunofluorescence analyses revealed decreased astrocyte and microglia activation. Activation of ERK and NF-κB signals and expression of transient receptor potential vanilloid 1 (TRPV1) expression were downregulated. Conclusion NCSC-laden nerve scaffolds mitigated SNT-induced neuropathic pain and improved motor function recovery after sciatic nerve repair. NCSCs also protected the spinal cord from SNT-induced glial activation and central sensitization.