Browsing by Author "Zhou, Xu-Hui"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Frame-independent vector-cloud neural network for nonlocal constitutive modeling on arbitrary gridsZhou, Xu-Hui; Han, Jiequn; Xiao, Heng (Elsevier, 2022-01-01)Constitutive models are widely used for modeling complex systems in science and engineering, where first-principle-based, well-resolved simulations are often prohibitively expensive. For example, in fluid dynamics, constitutive models are required to describe nonlocal, unresolved physics such as turbulence and laminar–turbulent transition. However, traditional constitutive models based on partial differential equations (PDEs) often lack robustness and are too rigid to accommodate diverse calibration datasets. We propose a frame-independent, nonlocal constitutive model based on a vector-cloud neural network that can be learned with data. The model predicts the closure variable at a point based on the flow information in its neighborhood. Such nonlocal information is represented by a group of points, each having a feature vector attached to it, and thus the input is referred to as vector cloud. The cloud is mapped to the closure variable through a frame-independent neural network, invariant both to coordinate translation and rotation and to the ordering of points in the cloud. As such, the network can deal with any number of arbitrarily arranged grid points and thus is suitable for unstructured meshes in fluid simulations. The merits of the proposed network are demonstrated for scalar transport PDEs on a family of parameterized periodic hill geometries. The vector-cloud neural network is a promising tool not only as nonlocal constitutive models and but also as general surrogate models for PDEs on irregular domains.
- Using Machine Learning to Predict Urban Canopy Flows for Land Surface ModelingLu, Yanle; Zhou, Xu-Hui; Xiao, Heng; Li, Qi (American Geophysical Union, 2023-01-16)Developing urban land surface models for modeling cities at high resolutions needs to better account for the city-specific multi-scale land surface heterogeneities at a reasonable computational cost. We propose using an encoder-decoder convolutional neural network to develop a computationally efficient model for predicting the mean velocity field directly from urban geometries. The network is trained using the geometry-resolving large eddy simulation results. Systematic testing on urban structures with increasing deviations from the training geometries shows the prediction error plateaus at 15%, compared to errors sharply increasing up to 35% in the null models. This is explained by the trained model successfully capturing the effects of pressure drag, especially for tall buildings. The prediction error of the aerodynamic drag coefficient is reduced by 32% compared with the default parameterization implemented in mesoscale modeling. This study highlights the potential of combining computational fluid dynamics modeling and machine learning to develop city-specific parameterizations.