Browsing by Author "Zimmermann, Bernd D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- High resolution optical time domain reflectometry and its applicationsZimmermann, Bernd D. (Virginia Polytechnic Institute and State University, 1988-01-15)High resolution Optical Time Domain Reflectometry (OTDR) measurements have recently allowed spatial resolutions of less than one millimeter. These capabilities indicate that OTDR techniques may be suitable for non-conventional applications such as the determination of fiber strain. This thesis presents an investigation of how high resolution OTDR techniques can be used in such applications. The concept of fiber segmentation via partially reflective optical splices for local strain measurements is discussed both from a theoretical and practical standpoint. Experimental results demonstrating the feasibility of such local strain measurements are also given. Another part of this investigation considers the practical details of the proposed strain measurement technique, addressing such topics as launching conditions, and environmental factors. Possible applications of the local strain measurement techniques, such as two- and three-dimensional stress analysis, and strain determination of fiber optic cables, are also presented. These applications also include the development of small, easy to manufacture elastomeric optical splices, which were shown to yield acceptable performance < 0.2 dB losses) for multimode fibers.
- Method and apparatus for sensing strain in a waveguide(United States Patent and Trademark Office, 1993-02-23)The present invention pertains to a strain sensor. The strain sensor is comprised of an optical wave guide, a device for providing optical pulses to the optical wave guide and a device for sensing localized strain in the optical waveguide. The sensing device determines shifts in arrival times of the optical pulses at the sensing device that correspond to the localized strain. The apparatus includes a light source, a light detector, and a waveguide connecting the source with the detector. The apparatus also includes means for generating light pulses from the source through the waveguide and means for repeatedly propagating at least one of the light pulses in a closed loop. The light source detects arrival times of the light pulses.