Browsing by Author "Zink-Sharp, Audrey G."
Now showing 1 - 20 of 37
Results Per Page
Sort Options
- Adhesion Fundamentals in Spotted Gum (Corymbia citriodora)Burch, Coleman Patrick (Virginia Tech, 2015-12-23)The goal of this project was to advance adhesion science and technology related to the Australian hardwood spotted gum (Corymbia citriodora). Plantation-grown spotted gum exhibits poor adhesion properties in comparison with similar woods, such as Gympie messmate (Eucalyptus cloeziana). To better understand adhesion differences between these two woods, this research compared and contrasted the surface chemistries of plantation-grown spotted gum and Gympie messmate with a particular focus on sensitivity to thermal deactivation. Wetting measurements were performed using the sessile drop method. Initial and equilibrium contact angles, time-dependent wetting, and surface energy were determined. Time-dependent wetting and equilibrium contact angles were most informative. Initial contact angles and surface energy calculated with them were misleading and often generated anomalous results. Heating water-saturated wood to mild surface temperatures (105 deg C, directly after evaporative cooling) severely deactivated spotted gum but not Gympie messmate. This suggests conventional kiln drying appears unsuitable for spotted gum while amenable for Gympie messmate. Spotted gum likely requires non-aqueous, low surface tension adhesives or aqueous adhesives formulated with surface active wetting agents. Water-saturation (followed by room-temperature vacuum drying) substantially altered the surface chemistries of both woods, making them more hydrophilic. Consequently, the question was raised of whether a water-spray onto the wood surface prior to adhesive application could improve bonding. If so, this simple, industrially-feasible treatment could prove very beneficial to the wood composites industry. Water-saturation also revealed differences in the two wood's water permeability, which has implications for adhesive penetration and wood drying and may additionally help explain adhesion differences. Analysis of the plantation-grown heartwood (inner, middle, and outer heartwood regions) revealed significant wetting differences on spotted gum with only minor differences on Gympie messmate. The Australian woods were compared to two North American woods-loblolly pine (Pinus taeda) and Douglas-fir (Pseudotsuga menziesii). Examining water wetting measurements, the Australian and North American woods exhibited some interesting similarities. However, methylene iodide wetting measurements revealed that the Australian woods were quite different from the North American samples studied here.
- Adhesive Bonding of Low Moisture Hickory Veneer with Soy-based AdhesiveWykle, Cody James (Virginia Tech, 2019-06-10)Low moisture veneer and regions of sapwood within hickory engineered wood flooring bonded with soy-flour adhesive are thought to be factors leading to potential performance deficiencies. The goal of this research was to gain a broader understanding of bonding low moisture hickory veneer with soy-based adhesive. Soyad® is of particular interest due to its novel cross-linking chemistry. Impacts of moisture content and wood region (heartwood versus sapwood) were analyzed with dry and wet shear bond strength tests, measurement of percent wood failure, lathe check characterization, and adhesive bondline thickness and penetration depth measurement. Impact of wood region and type (hickory versus red oak) was assessed by comparing wood buffering capacity and delamination following three-cycle water soaking. Dry and wet shear strength values met expectations for engineered wood flooring yet percentage wood failure results were uniformly very low for all combinations of moisture levels and wood regions. In contrast, delamination following wet and dry cycling was minor and within minimum requirements for all specimens tested. The influence of moisture level, wood region and type were inconsistent; statistically significant relationships were not evident within the moisture range studied. However, different wood regions and types exhibited differing veneer buffering capacities that had potential to interfere with pH requirements of Soyad®. Additional study of buffering capacity and resin cure is recommended to determine the significance of the buffering capacity results found in this study.
- Analysis of Calcutta bamboo for structural composite materialsAhmad, Mansur (Virginia Tech, 2000-08-11)Land use issues have dramatically changed the timber supply outlook for our nation's forest products industry. Since demand for wood products shows no sign of abating, alternative products must be developed. Bamboo is a very promising alternative raw material for the manufacture of structural composite products. It is fast growing, economical, renewable and abundant throughout the world. Bamboo has physical and mechanical properties that are comparable to many commercial timber species, and thus, may easily be processed using existing technology from the wood-based composites industry. Bamboo can be cultivated in the U.S., and thus has the potential to relieve some of the harvesting pressure from our nation's forestlands. However, the use of specific bamboo species for structural composite products will require a thorough investigation of the material as well as its interaction with other components. Thus, the primary objective of this dissertation is to determine the properties of Calcutta bamboo and its interaction with adhesives. The properties investigated were relative density, dimensional stability, equilibrium moisture content, bending strength and stiffness, tensile strength, pH, buffer capacity, wettability and the adhesive penetration. In addition to this, a prototype bamboo parallel strip lumber (BPSL) was manufactured and tested for its physical and mechanical properties. The relationships among the properties of Calcutta bamboo and the prototype bamboo composite were also investigated. As the result of these investigations, it is concluded that Calcutta bamboo is technically a suitable raw material for structural composite products. This result may also be applicable for the utilization of other bamboo species, thus aiding companies in decisions regarding investment in bamboo plantations and manufacturing facilities in the U.S, Malaysia and other parts of the world. The primary benefits from this research may be the development of new products to serve growing markets, and thereby relieving some of the pressure to harvest forestlands.
- Changes in Oriented Strandboard Permeability During Hot-PressingHood, Jonathan Patrick (Virginia Tech, 2004-06-04)Convective heat transfer during hot pressing in wood-based composite panel manufacturing is widely accepted as the most important means of heat transport for resin curing. The rate of convective heat transfer to the panel core is controlled by its permeability. Permeability in the plane of the panel also controls the flow of vapor to the panel edges, thereby influencing the potential for panel "blowing". This research considers how flake thickness, flake alignment and changing mat density during hot-pressing influences OSB mat permeability, through its thickness and in the plane of the panel. Some previous research exists but it fails to address the affects of horizontal and vertical density gradients as well as flake alignment. An apparatus was designed to allow cold pressing of aligned flakes to desired densities while enabling permeability measurements through the mat thickness. An additional apparatus was designed to allow the measuring of permeability in the plane of the mat. These designs permitted permeability measurements in mats that had no vertical density gradient, allowing for the direct study of permeability versus density (compaction ratio). Superficial permeability was determined using Darcy's law and for each sample, multiple readings were made at five different pressure differentials. Permeability through the mat thickness was highly dependent on compaction ratio and to a lesser extent flake thickness. As the compaction ratio is increased, the initial reduction in permeability is severe, once higher compaction ratios are achieved the reduction in permeability is less pronounced. Permeability decreased with decreasing flake thickness. Permeability in the plane of the mat decreases with increasing compaction ratio but in a less severe manner than through the mat thickness. In this case, the permeability-compaction ratio relationship appears linear in nature. Again, permeability decreases with decreasing flake thickness.
- Combined Tension and Bending Loading in Bottom Chord Splice Joints of Metal-Plate-Connected Wood TrussesO'Regan, Philip J. (Virginia Tech, 1997-05-01)Metal-plate-connected (MPC) splice joints were tested in combined tension and bending to generate data that were used in the development of a design procedure for determining the steel net-section strength of bottom chord splice joints of MPC wood trusses. Several common wood truss splice joint configurations were tested at varying levels of combined tension and bending loading. The joint configurations were 2x4 lumber with 20-gauge truss plates, 2x6 lumber with 20-gauge truss plates, and 2x6 lumber with 16-gauge truss plates. All the joints tested failed in the steel net-section of the truss plates. The combined loading was achieved by applying an eccentric axial tension load to the ends of each splice joint specimen. Three structural models were developed to predict the ultimate strength of the steel net-section of the splice joints tested under combined tension and bending loading. The test data were fitted to each model, and the most accurate model was selected. Data from other published tests of splice joints were used to validate the accuracy of the selected model. A design procedure for determining the allowable design strength of the steel net-section of a splice joint subjected to combined tension and bending was developed based on the selected model. The new design procedure was compared with two existing design methods. The proposed design procedure is recommended for checking the safe capacity of the steel net-section of bottom chord splice joints of MPC wood trusses subjected to combined tension and bending.
- Compression wood formation in Pinus strobus L. following ice storm damage in southwestern VirginiaHook, Benjamin Austin (Virginia Tech, 2010-04-22)To evaluate the compression wood response in eastern white pine (Pinus strobus L.) following a severe ice storm in 1994, 47 trees were felled in 2007 and cross-sectional samples were collected at 0.5 (±0.2) m stem height. The disks were sanded and digitally scanned, and the cross-sectional area (mm2) of compression wood within each tree-ring was quantified using image analysis software. Topographic data (slope, aspect, and elevation) were also recorded for each P. strobus tree, along with a modified competition index. Wood anatomical features were also quantified in the three years before and after the storm along a tree diameter gradient. Although tree age was relatively constant in this stand, tree size was influenced by topographic position; larger trees grew in the valley while smaller trees were found growing in thin soils at the mid-slope position. When the cohort was about 25 years old, ice deposition caused a heterogeneous compression wood response which was highly related to tree size. In the thirteen years following the ice storm, the 6 – 9 cm (2007) diameter class formed significantly more compression wood area than any other, followed by the 10 – 13 cm (2007) diameter class. The tree diameter range that formed the most post-storm compression wood was 4 – 8 cm at the time of the storm, suggesting that this diameter range was most affected by 8.5 cm of ice loading in P. strobus. Trees > 18 cm in 1994 did not form any compression wood after the storm, but many experienced a growth release to fill canopy gaps. Topographic variables did not influence compression wood formation directly, but only one plot was sampled so these results are tenuous. However, topography did influence tree size which was the most important predictor in compression wood. There was no relationship between compression wood area and competition index. Due to compression wood formation after the ice storm, cell wall thickness and cell circularity were significantly higher in the 1994 tree-ring than in other rings examined (1991 – 1993, 1995, and 1996). Tracheid and lumen diameters were significantly smaller in compression wood cells (30.5 and 19.5 μm, respectively) than in normal wood (36.8 and 28.4 μm, respectively); opposite wood cells were intermediate in size (32.4 and 24.4 μm, respectively). Due to small tracheid size, compression wood contained significantly more cells mm⁻¹ (33) than normal wood (27), but no significant differences in cell wall area. Therefore, cumulative cell wall area occupied 47% of the cross-section in compression wood tissue on average, compared to 31% in normal wood. Dispersing tree weight across a greater surface area may help compression wood to prop up a bent tree, but reduced lumen area may also impact hydraulic conductivity in the stem.
- Design and testing of a prototype in-line chip quality monitorAuel, John B. (Virginia Tech, 1996-09-06)This project involved the design and testing of a prototype in-line chip quality monitor for gathering process control information for the manufacturers of wood chips. This monitor specifically addresses three common complaints with current chip sampling procedures. Chip sampling occurs too late in the process. It is inadequate. It is too infrequent to develop management information. The monitor is composed of a double screen drum separator to divide chips into oversize, accepts, and pins/fines. Counterbalanced tip buckets are used to weigh each size class. Tip bucket cycles are recorded by a computer via magnetic proximity switches attached to each bucket. This information is then used to chart production of chip size classes, updated continuously over the sorting period. This monitor is capable of sorting one ton of chips per hour. Two trials were conducted to test the monitor. One in a lab environment, and one on site at a chip mill. Both trials compared monitor output with independent samples classified using a Williams classifier. The trials showed that outputs were consistent with Williams output. This monitor can effectively chart chip distribution information. This process control information provides the manufacturer with immediate knowledge of chipper performance.
- Effect of Minimum Suppression and Maximum Release Years on Compression Parallel to Grain Strength and Specific Gravity for Small-sized Yellow-poplar (Liriodendron tulipifera L.) SpecimensMettanurak, Thammarat (Virginia Tech, 2008-04-04)Several researchers have concluded that there is little or no relationship between specific gravity and ring width or growth rate in yellow-poplar (Liriodendron tulipifera L.). Because most mechanical properties of wood are also closely related to specific gravity, it would thus be of interest to learn how minimum suppression and maximum release years' evidence that can be extracted from radial growth patterns based on a modified radial growth averaging (RGA) technique's influence the compression parallel to grain strength and specific gravity of wood. This study is designed to evaluate the effects of growth suppression and release on ultimate crushing stress and specific gravity for small-sized yellow-poplar specimens. Additionally, the relationship between specific gravity and ultimate crushing stress is investigated. Twenty-three yellow-poplar cores were examined for their growth ring widths. Minimum suppression and maximum release years were identified based on the modified RGA criteria method. From each increment core, three 1 Ã 1 Ã 4 mm specimens from both minimum suppression and maximum release years were tested for their ultimate crushing stresses using a micro-mechanical test system. The specific gravity of each specimen was also recorded. These data were analyzed using a paired samples t test and a simple linear regression. The results indicate that the mean ultimate crushing stress and specific gravity of maximum release years were significantly higher than that of minimum suppression years. Furthermore, the ultimate crushing stress was linearly related to the specific gravity of the specimens.
- Experimental Evaluation and Simulations of Fiber Orientation in Injection Molding of Polymers Containing Short Glass FibersVelez-Garcia, Gregorio Manuel (Virginia Tech, 2012-01-31)Injection molded short fiber reinforced composites have generated commercial interest in the manufacturing of lightweight parts used in semi-structural applications. Predicting these materials’ fiber orientation with quantitative accuracy is crucial for technological advancement, but the task is difficult because of the effect of inter-particle interactions at high concentrations of fiber found in parts of commercial interest. A complete sample preparation procedure was developed to obtain optical micrographs with optimal definition of elliptical and non-elliptical footprint borders. Two novel aspects in this procedure were the use of tridimensional markers to identify specific locations for analysis and the use of controlled-etching to produce small shadows where fibers recede into the matrix. These images were used to measure fiber orientation with a customized image analysis tool. This tool contains several modifications that we introduced in the method of ellipses which allow us to determine tridimensional fiber orientation and to obtain measurements in regions with fast changes in orientation. The tool uses the location of the shadow to eliminate the ambiguity problem in orientation and characterizes non-elliptical footprints to obtain the orientation in small sampling areas. Cavitywise measurements in two thin center-gated disks showed the existence of an asymmetric profile of orientation at the gate and an orientation profile that washed out gradually at the entry region until disappearing at about 32 gap widths. This data was used to assess the prediction of cavitywise orientation using a delay model for fiber orientation with model parameters obtained from rheometrical experiments. Model predictions combining slip correction and experimentally determined orientation at the gate are in agreement with experimental data for the core layers near the end-of-fill region. Radialwise measurements of orientation at the shell, transition and core layer, and microtextural description of the advancing front are included in this dissertation. The analysis and assessment of the radial evolution of fiber orientation and advancing front based on comparing the experimental data with simulation results are under ongoing investigation.
- Forest Disturbances: Occurrences and Impacts of Recreational, Hydrogeomorphic, and Climatic DisturbancesKidd, Kathryn Rebecca Booker (Virginia Tech, 2015-04-22)Disturbances impact abiotic and biotic components within forested ecosystems. This dissertation identifies the impacts of recreational crossing disturbances on water quality, uses dendrochronological techniques to estimate sediment deposition and identify impacts hydrology and climate on radial growth in riparian forested wetlands, and quantifies influences of biotic and abiotic factors on the occurrence of frost-induced cambial damage. In southwestern Virginia, modeled soil erosion rates for multiple-use (hiking, mountain biking, and horseback riding) recreational trail approaches to stream crossings were found to be 13 times greater than rates for undisturbed forests. Downstream changes in macroinvertebrate-based indices indicated water quality was negatively affected downstream from culvert and ford crossings. These findings illustrate recreational stream crossings have the potential to deliver sediment into adjacent streams, particularly where best management practices are not being rigorously implemented, and as a result can negatively impact water quality below stream crossings. Impacts of hydrologic regime were apparent on sediment deposition and on green ash (Fraxinus pennsylvanica Marsh.) and water tupelo (Nyssa aquatica L.) radial growth along the Tensaw River in southwest Alabama. Annual dendrogeomorphic sediment accretion rates were significantly greater for a recent time period (25 years) when compared to longer term rates (131 years) along a natural levee and backswamp. Radial growth in green ash along the natural levee and backswamp was found to be significantly correlated with days flooded and average daily stage level during April while water tupelo further in the backswamp appeared resistant to hydrologic and climatic fluctuations. Results illustrate the importance of riparian wetlands in trapping sediment from adjacent waterways and highlight the role hydrologic regime plays in bottomland succession and productivity. Across northern lower Michigan, late spring frost-induced cambial damage in jack pine (Pinus banksiana Lamb.) occurred more frequently in younger trees and in trees with smaller diameters. Biotic and abiotic factors were found to influence the occurrence of earlywood frost rings. Frequent occurrences of frost-rings can be used to identify frost-prone environments and geographical boundaries for plant species. This dissertation bridged gaps in knowledge of recreational, hydrogeomorphic, and climatic disturbances in forested ecosystems which can be used to develop management strategies.
- Intra-Ring Compression Strength of Low Density HardwoodsZink-Sharp, Audrey G.; Price, Carlile (Universidad del Bío-Bío, 2006)Engineered wood composites are being crafted with increasingly smaller and smaller components, yet a search of the literature indicates a lack of intra-ring mechanical property data for almost all commercial wood types, particularly the underutilized low density hardwoods. In addition, there is no universally accepted testing regime for determining micromechanical properties of wood samples. As a result, we developed a testing system for determining compression, tension, and bending properties of growth ring regions of wood samples. Our microtesting system consists of a 45.4 kg load stage, motor drive, data acquisition system, motor control, load cell, strain transducer, and software. In this study, intra-ring compression strength parallel to the grain was determined for small samples (a few ml3 in volume) of sweetgum (Liquidambar styraciflua), yellow-poplar (Liriodendron tulipifera), and red maple (Acer rubrum). It was determined that compression strength is weakly correlated with specific gravity but unrelated to growth rate. Specific gravity was also unrelated to growth rate. Sweetgum values were intermediate between yellow-poplar and red maple.
- Investigating Differences in Douglas-fir and Southern Yellow Pine Bonding PropertiesMirabile, Kyle Vincent (Virginia Tech, 2015-10-22)Differences in southern yellow pine (represented by Pinus taeda) and Douglas-fir (Pseudotsuga menziesii) mature and juvenile wood were examined in terms of density, chemical composition, surface energy, shear stress, % wood failure, and delamination. Density was measured using a QTRS density scanner. Loblolly pine contained a higher average density. Chemical composition was measured using the NREL standard for identifying the chemical composition of biomass. Southern yellow pine contained a higher % hemicellulose, lignin, and extractives. Douglas-fir had higher % cellulose than southern yellow pine. Surface energy was measured using the static sessile drop contact angle method and the acid/base approach. Southern yellow pine contained a lower average contact angle than Douglas-fir. Shear stress, % wood failure, and durability were measured using ASTM-D2559 with two adhesives, a one-part moisture cure polyurethane (PU), and a two-part ambient curing phenol-resorcinol-formaldehyde (PRF). Shear stress for southern yellow pine was affected the most by the type of growth regions at the bond (juvenile to mature wood) and the assembly times of the adhesives used. Douglas-fir shear stress was affected by the type of adhesive and the growth region at the bond. Delamination results demonstrated that when using PRF the southern yellow pine has less delamination statistically than Douglas-fir. Also, the growth region at the bond with both adhesives showed to impact delamination with juvenile to mature wood having less delamination than mature to mature wood.
- Investigating the Surface Energy and Bond Performance of Compression Densified WoodJennings, Jessica D. (Virginia Tech, 1997-09-10)The bond performance and surface energy of hygro-thermal compression densified wood were studied using comparisons to hygro-thermally treated and control yellow-poplar (Liriodendron tulipifera). Bond performance was studied using opening mode double cantilever beam fracture testing and cyclic boiling of one half of all fracture samples. Phenol formaldehyde film (PF-film) and polymeric diphenylmethane diisocyanate (pMDI) were the two different adhesives used to bond fracture samples. Hygro-thermal samples bonded with PF-film had significantly higher fracture toughness than control samples, while no difference was found for densified samples. Densified samples bonded with pMDI had significantly higher fracture toughness than control samples while no change was seen for hygro-thermal samples. Boil cycling reduced fracture toughness of hygro-thermal fracture samples only, irrespective of adhesive type. Surface energy was studied using sessile drop contact angle measurement and the Chang model of acid-base, surface energy component calculation. Water, glycerol, formamide, ethylene glycol, and -Bromonapthalene were used as probe liquids. Densified and hygro-thermally treated yellow-poplar had significantly higher contact angles than control samples. The contact angle trends for densified and hygro-thermally treated wood were found to be the same. Total surface energy as well as the polar and acid components of surface energy decreased with hygro-thermal treatment. The dispersive and base components of surface energy increased with hygro-thermal treatment.
- Investigation of Research Commercialization at a University: A Case StudyZhou, Yu (Virginia Tech, 2015-05-06)With the increase of awareness and focus on university research commercialization, much research had been conducted to investigate this subject. It was revealed that because universities were not traditionally built to serve the purpose of commercialization, many obstacles existed in the path of university research commercialization. Historically, research had largely focused on identifying critical factors that impacted the performance of commercialization. However, it was not clear how those findings could be systematically incorporated into the commercialization improvement plan of individual cases. This research intended to fill this gap and provide a framework that could be used by most universities to access and improve their research commercialization process. A case study of a U.S. land-grant university was conducted and a narrative approach was mainly used as the method of data analysis. Under the scope of a single-case study, four sub-studies were conducted to address the goals of this research. First, a framework was developed that incorporated theories of existing research and the value stream map of lean management. Interviews with the intellectual property office and faculty were conducted to determine if the theoretical framework was applicable. It was found that the framework fitted well with the current process of university research commercialization. After that, a survey that covered a sample size of 1110 researchers at the targeted university was conducted to investigate the importance of different resources at different stages of the process. Resources that were under investigation were grouped into four categories: technical, human, social, and financial resources. This research identified the most important resources for research commercialization were industrial connections (social resource) and assistance from the intellectual property (IP) office (human resource), with industrial connections playing a more importance role at the beginning of the process and the IP office from the stage of patent application. To assess organizational characteristics of the targeted university, interviews were conducted with 22 faculty, three representatives from the administration, one representative from the intellectual property office, and one representative from an external organization. Six criteria derived from previous research were used to guide the assessment: (1) expenditures on research and development (RandD), (2) intellectual property policy, (3) research field, (4) key individuals, (5) commitment to innovation, and (6) networking with external relations. It was found that the targeted university had strong evidence of the advantages of expenditures on RandD and research field, however, it was relatively weak in the other four characteristics. The last part of the research involved interviews with two companies for the purpose of developing a best practice for research commercialization with the examples from the industry. Recommendations to improve targeted university's research commercialization were developed based on findings of the research.
- Mechanism of Flake Drying and Its Correlation to QualityDeomano, Edgar Dela Cruz (Virginia Tech, 2001-07-16)This research focuses on experimental investigations of the drying and bending properties of wood flakes. Three species (southern yellow pine, sweetgum, and yellow-poplar) were tested. Experiments on flake drying and effect of flake properties (cutting direction and dimension) and an external factor (temperature) were used to evaluate the flake drying process. Drying experiments were conducted using a convection oven. Bending properties of dried flakes were also measured. Modulus of elasticity (MOE), modulus of rupture (MOR), and strength at proportional limit (SPL) of flakes were measured based on Methods of Testing Small Clear Specimens of Timber (ASTM D143-94) using a miniature material tester. The drying curve was characterized by a second-order/quadratic equation. This equation was then differentiated to get the drying rate curve. Observation on drying and drying rate curves revealed that the rate of moisture loss consists of two falling rate periods; no constant rate drying period was observed. First falling rate drying period is controlled by convective heat transfer. Bound water diffusion controls the second falling rate drying period. Species, cutting direction, dimension, and temperature were found to have significant effect on drying rate of wood flakes. Southern yellow pine has the fastest drying rate followed by sweetgum then yellow-poplar. Differences in drying rate between species were attributed to differences in specific gravity and other factors. Radially-cut specimens have a slower drying rate than tangentially-cut specimens. There were also significant differences in drying rate between the four different flake dimensions. Thickness was found to be the more sensitive parameter in terms of dimensions. As expected, drying temperature also had highly significant effect on drying rate. An increasing trend in drying rate was observed as drying temperature increased. Simulation of flake drying using a numerical model yielded a different result. Simulated flake drying has two drying periods: a constant rate and falling rate. Moisture of the flake decreases constantly and surface temperature increases rapidly to boiling point and remains there in the constant rate drying period. During the falling rate period, rate of moisture transport is limited by the ability of water to diffuse through wood and flake temperature starts to rise. Bending properties were found to vary between and within the three species. Southern yellow pine had the lowest bending stiffness and strength followed by sweetgum while yellow-poplar had the highest bending properties. Radially-cut specimens were found to have lower MOE, MOR, and SPL than tangentially-cut specimens. Drying temperature was also found to have a significant effect on bending stiffness and strength. A decreasing trend in bending properties was observed when drying temperature was increased.
- Modeling the Dynamic Interactions between Wood Pallets and Corrugated Containers during ResonanceWeigel, Timothy G. (Virginia Tech, 2001-04-16)The unit load is the form of most commercial and industrial products during storage and distribution. A simple form of a unit load, a palletized bulk bin is commonly used to transport fruit and vegetables from the point of harvest to processing facilities. These vibration sensitive products are often subjected to damaging vibrations during this period. Most damage occurs during the large accelerations associated with resonance, which occurs when the natural frequency of the unit load matches the input frequencies commonly encountered during transportation. A computer model, called RoPUL (resonance of palletized unit loads), of a palletized bulk bin loaded with fruit, was developed using finite element analysis techniques. Unit loads consisting of palletized bulk bins of apples and peaches were tested and RoPUL was found to accurately predict the resonant frequencies of these loads. Using RoPUL, the effects of product mass, container design, and pallet design on natural frequencies can be analyzed. As the input frequencies of most transportation modes is well documented, RoPUL can be used to help design a unit load to better protects vibration sensitive products during shipment.
- Modification of Wood Fiber with Thermoplastics by Reactive Steam-ExplosionRenneckar, Scott Harold (Virginia Tech, 2004-07-16)For the first time, a novel processing method of co-refining wood and polyolefin (PO) by steam-explosion was scientifically explored for wood-thermoplastic composites without a coupling agent. Traditional studies have addressed the improvement of adhesion between components of wood thermoplastic composites through the use of coupling agents such as maleated PO. The objective of this study was to increase adhesion between wood and PO through reactive processing conditions of steam-explosion. PO characteristics, such as type (polyethylene or polypropylene), form (pellet, fiber, or powder) and melt viscosity were studied along with oxygen gas content of the steam-explosion reactor vessel. Modification of co-processed wood fiber was characterized in four studies: microscopy analysis of dispersion of PO with wood fiber, sorption properties of co-processed material, chemical analysis of fractionated components, and morphological investigation of co-processed material. Two additional studies are listed in the appendices that relate to adsorption of amphiphilic polymers to the cellulose fiber surface, which is one hypothesis of fiber surface modification by co-steam-explosion. Microscopy studies revealed that PO melt viscosity was found to influence the degree of dispersion and uniformity of the steam-exploded material. The hygroscopic nature of the co-processed fiber declined as shown by sorption isotherm data. Furthermore, a water vapor kinetics study found that all co-refined material had increased initial diffusion coefficients compared to the control fiber. Chemical changes in fractionated components were PO-type dependent. Lignin extracted from co-processed wood and polyethylene showed PO enrichment determined from an increase of methylene stretching in the Fourier Transform infrared subtraction spectra, while lignin from co-processed wood and polypropylene did not. Additionally, extracted PO showed indirect signs of oxidation as reflected by fluorescence studies. Solid state nuclear magnetic resonance spectroscopy revealed a number of differences in the co-processed materials such as increased cellulose crystallinity, new covalent linkages and an alternative distribution of components on the nanoscale reflected in the T1Ï relaxation parameter. Steam-explosion was shown to modify wood fiber through the addition of "non-reactive" polyolefins without the need for coupling agents. In light of these findings, co-refining by steam-explosion should be viewed as a new reactive processing method for wood thermoplastic composites.
- Moisture Gradient Measurement During Kiln Drying of Red OakGu, Hong-mei (Virginia Tech, 1997-09-29)The key to improving drying quality and reducing drying time and energy consumption lies in understanding and controlling moisture movement during drying. As wood dries, strains and stresses develop as a result of restraints imposed by moisture gradients and differential shrinkage in wood. So accurately measuring the moisture gradient in wood during drying will be helpful to improving drying quality. In this project, moisture gradients in red oak will be measured through four different techniques----bandsaw slicing, Forstner bit layering, flaking and razor blade slicing. The first two techniques are found in the literature. The last two are developed in this study. The results obtained with these four techniques were compared, and it was found that the newly developed techniques could get moisture gradients that were closer to the true value. The thickness of the slice was assumed to affect measuring the moisture gradient because of the environmental influences. So a thickness series was tested with the two new technique----flaking and razor blade slicing. The results showed that there was no slice or flake thickness effect on the moisture gradients.And an optimum slice and flake thickness was determined for the wood industries and research studies. Finally, the directional effect on transverse moisture movement during kiln drying was examined through measuring moisture gradients in the tangential and radial directions of wood. The results showed that moisture moved slightly faster in the radial direction than in the tangential direction during kiln drying and the moisture gradients in the tangential direction were slightly steeper than those in the radial direction.
- Nanocellulose: Preparation, Characterization, Supramolecular Modeling, and its Life Cycle AssessmentLi, Qing Qing (Virginia Tech, 2012-12-13)Nanocellulose is a nascent and promising material with many exceptional properties and a broad spectrum of potential applications; hence, it has drawn increasing research interests in the past decade. A new type of nanocellulose -- with mono- or bi-layer cellulose molecular sheet thickness -- was synthesized through a combined chemical-mechanical process (TEMPO-mediated oxidation followed by intensive sonication), and this new material was named molecularly thin nanocellulose (MT nanocellulose). The overarching objective of this study was to understand the formation and supramolecular structure of MT nanocellulose and contribute to the knowledge of native cellulose structure. The research involved four major bodies of study: preparation of MT nanocellulose, characterization of MT nanocellulose, modeling wood pulp-derived cellulose microfibril cross section structure, and a comparative life cycle assessment (LCA) of different nanocellulose fabrication approaches. The results revealed that MT nanocellulose with mono- to bi-layer sheet thickness (~0.4-0.8 nm), three to six chain width (~2-5 nm), and hundreds of nanometers to several microns length, can be prepared through TEMPO-mediated oxidation followed by 5-240 min intensive sonication. The thickness, width, and length of MT nanocellulose all decreased with extended sonication time and leveled off after 1 or 2 h sonication. Crystallinity, hydrogen bonding, and glycosidic torsion angles were evaluated by XRD, FTIR, Raman, and NMR. These experiments revealed systematic changes to structure with sonication treatments. A microfibril "cross section triangle scheme" was developed for the microfibril supramolecular modeling process and a 24-chain hexagonal/elliptical hybrid model was proposed as the most credible representation of the supramolecular arrangement for wood pulp-derived cellulose I" microfibril. Comparative LCA of the fabrication of nanocellulose indicated that nanocellulose presented a significant environmental burden markup on its precursor, kraft pulp, and the environmental hotspot was attributed to the mechanical disintegration process. Yet, overall nanocellulose still presented a prominent environmental advantage over other nanomaterials like single-walled carbon nanotubes, due to its relative low energy consumption. Overall, this research developed a facile approach to produce a new type of nanocellulose, the MT nanocellulose, provided new insights about the supramolecular structure of cellulose microfibrils, and evaluated the environmental aspects of the fabrication process of nanocellulose.
- Nanocomposite-based Lignocellulosic FibersLin, Zhiyuan (Virginia Tech, 2009-12-16)The formation of layered nanoparticle films on the surface of wood fibers is reported in this study. The layer-by-layer (LbL) assembly technique was comprehensively investigated as a non-covalent surface modification method for lignocellulosic fiber. Nanocomposite-based lignocellulosic fibers were successfully fabricated by sequential adsorption of oppositely charged poly(diallydimethylammonium) chloride (PDDA) and clay nanoparticles in a number of repeated deposition cycles. Nanocomposite fibers displayed layered structure as indicated by the electrokinetic potential studies and scanning electron microscopy (SEM) analysis. Layer-by-layer films of PDDA and clay impacted the thermal stability of wood fibers. Average degradation temperature at 5 and 10% weight loss for modified fibers with 4 bi-layers increased by up to ~24 and ~15°C, respectively. Significant char residue formed for the LbL modified fibers after heating to 800°C, indicating that the clay-based coating may serve as a barrier, creating an insulating layer to prevent further decomposition of the material. Layer-by-layer film formation on wood fibers was investigated as a function of parameters related to fiber composition and solution conditions (ie. presence of lignin, salt concentration and pH). Elemental analysis of modified fibers revealed that PDDA adsorption to the fibers was reduced for all solution conditions for the samples with the highest content of lignin. Upon extracting the non-covalently attached lignin, the samples showed the greatest amount of PDDA adsorption, reaching to 1.5% of total mass, under neutral solution conditions without the presence of added electrolyte. Furthermore, the influence of both the amount of PDDA adsorbed onto the fiber surface and electrokinetic potential of modified fibers on subsequent multilayer formation was quantified. Under select fiber treatments, great amount of PDDA/clay (up to ~75% total mass for only 4 bi-layers) was adsorbed onto wood fibers through the LbL process, giving these high surface area fibers nanocomposite coatings. LbL modified fibers were melt compounded with isotactic polypropylene (PP) and compression molded into test specimens. The effect of LbL modification as a function of the number of bi-layers on composite performance was tested using the tensile, flexural, dynamic mechanical and thermal properties of fiber reinforced thermoplastic composites. LbL modified fiber composites had similar modulus values but significantly lower strength values than those of unmodified fiber composites. However, composites composed of LbL modified fibers displayed increased elongation at break, increasing by more than 50%, to those of unmodified samples. DSC results indicated that crystallization behavior of PP is promoted in the presence of wood fibers. Both unmodified and LbL modified fibers are able to acts as nucleating agents, which cause an increase of the crystallinity of PP. Moreover, results from tensile and flexural strength, dynamic mechanical analysis and water absorption tests revealed that the material (PDDA or clay) at the terminal (outer) layer of LbL modified fiber influences the performance of the composites. These findings demonstrate control over the deposition of nanoparticles onto lignocellulosic fibers influencing terminal surface chemistry of the fiber. Further investigation into using renewable fibers as carriers of nanoparticle films to improve fiber durability, compounding with thermoplastics that have higher melt processing temperatures, and tailoring terminal surface chemistry to enhance adhesion is justified by this research.