Browsing by Author "Zou, Shiqiang"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Advancing Forward Osmosis for Energy-efficient Wastewater Treatment towards Enhanced Water Reuse and Resource RecoveryZou, Shiqiang (Virginia Tech, 2019-05-30)Current treatment of wastewater can effectively remove the contaminants; however, the effluent is still not widely reused because of some undesired substances like pathogens and trace organic chemicals. To promote water reuse, membrane-based technologies have emerged as a robust and more efficient alternative to current treatment practice. Among these membrane processes, forward osmosis (FO) utilizes an osmotic pressure gradient across a semi-permeable membrane to reclaim high-quality water. Still, several key challenges remain to be addressed towards broader FO application, including energy-intensive draw regeneration to yield product water and salinity buildup in the feed solution. To bypass energy-intensive draw regeneration, commercial solid fertilizers was utilized as a regeneration-free draw solute (DS), harvesting fresh water towards direct agricultural irrigation. However, using nutrient-rich fertilizers as DS resulted in an elevated reverse solute flux (RSF). This RSF, known as the cross-membrane diffusion of DS to the feed solution, led to deteriorated solute buildup on the feed side, reduced osmotic driving force, increased fouling propensity, and higher operation cost. To effectively mitigate solute buildup while achieving energy-efficient water reclamation, a parallel electrodialysis (ED) device was integrated to FO for DS recovery in the feed solution. The salinity in the feed solution was consistently controlled below 1 mS cm-1 via the hybrid FO-ED system. Considering solute buildup is merely a consequence of RSF, direct control of RSF was further investigated via operational strategy (i.e., an electrolysis-assisted FO) and membrane modification (i.e., surface coating of zwitterion-functionalized carbon nanotubes). Significantly reduced RSF (> 50% reduction) was obtained in both approaches with minor energy/material investment. With two major bottlenecks being properly addressed for energy-efficient water reclamation, FO was further integrated with a microbial electrolysis cell (MEC) to achieve integrated nutrient-energy-water recovery from high-strength wastewater (i.e., the digestor centrate). The abovementioned research projects are among the earliest efforts to address multiple key challenges of FO during practical application, serving as a cornerstone to facilitate the transformation of current water/wastewater treatment plant to resource recovery hub in order to ensure global food-energy-water security.
- Energy Consumption by Recirculation: A Missing Parameter When Evaluating Forward OsmosisZou, Shiqiang; Yuan, Heyang; Childress, Amy; He, Zhen (American Chemical Society, 2016-07-05)
- Energy consumption of water recovery from wastewater in a submerged forward osmosis system using commercial liquid fertilizer as a draw soluteXiang, Xiaoxue; Zou, Shiqiang; He, Zhen (2017-03-01)
- Mitigation of bidirectional solute flux in forward osmosis via membrane surface coating of zwitterion functionalized carbon nanotubesZou, Shiqiang; Smith, Ethan D.; Lin, Shihong; Martin, Stephen M.; He, Zhen (Elsevier, 2019-07-08)Forward osmosis (FO) has emerged as a promising membrane technology to yield high-quality reusable water from various water sources. A key challenge to be solved is the bidirectional solute flux (BSF), including reverse solute flux (RSF) and forward solute flux (FSF). Herein, zwitterion functionalized carbon nanotubes (Z-CNTs) have been coated onto a commercial thin film composite (TFC) membrane, resulting in BSF mitigation via both electrostatic repulsion forces induced by zwitterionic functional groups and steric interactions with CNTs. At a coating density of 0.97 gm⁻², a significantly reduced specific RSF was observed for multiple draw solutes, including NaCl (55.5% reduction), NH₄H₂PO₄(83.8%), (NH₄)₂HPO₄ (74.5%), NH₄Cl (70.8%), and NH₄HCO₃ (61.9%). When a synthetic wastewater was applied as the feed to investigate membrane rejection, FSF was notably reduced by using the coated membrane with fewer pollutants leaked to the draw solution, including NH₄⁺-N (46.3% reduction), NO₂⁻₋N (37.0%), NO₂⁻₋N (30.3%), K⁺ (56.1%), PO₄³⁻₋P (100%), and Mg²⁺ (100%). When fed with real wastewater, a consistent water flux was achieved during semi-continuous operation with enhanced fouling resistance. This study is among the earliest efforts to address BSF control via membrane modification, and the results will encourage further exploration of effective strategies to reduce BSF.