Browsing by Author "Zuo, Yiming"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Differential Network Analysis based on Omic Data for Cancer Biomarker DiscoveryZuo, Yiming (Virginia Tech, 2017-06-16)Recent advances in high-throughput technique enables the generation of a large amount of omic data such as genomics, transcriptomics, proteomics, metabolomics, glycomics etc. Typically, differential expression analysis (e.g., student's t-test, ANOVA) is performed to identify biomolecules (e.g., genes, proteins, metabolites, glycans) with significant changes on individual level between biologically disparate groups (disease cases vs. healthy controls) for cancer biomarker discovery. However, differential expression analysis on independent studies for the same clinical types of patients often led to different sets of significant biomolecules and had only few in common. This may be attributed to the fact that biomolecules are members of strongly intertwined biological pathways and highly interactive with each other. Without considering these interactions, differential expression analysis could lead to biased results. Network-based methods provide a natural framework to study the interactions between biomolecules. Commonly used data-driven network models include relevance network, Bayesian network and Gaussian graphical models. In addition to data-driven network models, there are many publicly available databases such as STRING, KEGG, Reactome, and ConsensusPathDB, where one can extract various types of interactions to build knowledge-driven networks. While both data- and knowledge-driven networks have their pros and cons, an appropriate approach to incorporate the prior biological knowledge from publicly available databases into data-driven network model is desirable for more robust and biologically relevant network reconstruction. Recently, there has been a growing interest in differential network analysis, where the connection in the network represents a statistically significant change in the pairwise interaction between two biomolecules in different groups. From the rewiring interactions shown in differential networks, biomolecules that have strongly altered connectivity between distinct biological groups can be identified. These biomolecules might play an important role in the disease under study. In fact, differential expression and differential network analyses investigate omic data from two complementary perspectives: the former focuses on the change in individual biomolecule level between different groups while the latter concentrates on the change in pairwise biomolecules level. Therefore, an approach that can integrate differential expression and differential network analyses is likely to discover more reliable and powerful biomarkers. To achieve these goals, we start by proposing a novel data-driven network model (i.e., LOPC) to reconstruct sparse biological networks. The sparse networks only contains direct interactions between biomolecules which can help researchers to focus on the more informative connections. Then we propose a novel method (i.e., dwgLASSO) to incorporate prior biological knowledge into data-driven network model to build biologically relevant networks. Differential network analysis is applied based on the networks constructed for biologically disparate groups to identify cancer biomarker candidates. Finally, we propose a novel network-based approach (i.e., INDEED) to integrate differential expression and differential network analyses to identify more reliable and powerful cancer biomarker candidates. INDEED is further expanded as INDEED-M to utilize omic data at different levels of human biological system (e.g., transcriptomics, proteomics, metabolomics), which we believe is promising to increase our understanding of cancer. Matlab and R packages for the proposed methods are developed and available at Github (https://github.com/Hurricaner1989) to share with the research community.
- Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSOZuo, Yiming; Cui, Yi; Yu, Guoqiang; Li, Ruijiang; Ressom, Habtom W. (2017-02-10)Background Conventional differential gene expression analysis by methods such as student’s t-test, SAM, and Empirical Bayes often searches for statistically significant genes without considering the interactions among them. Network-based approaches provide a natural way to study these interactions and to investigate the rewiring interactions in disease versus control groups. In this paper, we apply weighted graphical LASSO (wgLASSO) algorithm to integrate a data-driven network model with prior biological knowledge (i.e., protein-protein interactions) for biological network inference. We propose a novel differentially weighted graphical LASSO (dwgLASSO) algorithm that builds group-specific networks and perform network-based differential gene expression analysis to select biomarker candidates by considering their topological differences between the groups. Results Through simulation, we showed that wgLASSO can achieve better performance in building biologically relevant networks than purely data-driven models (e.g., neighbor selection, graphical LASSO), even when only a moderate level of information is available as prior biological knowledge. We evaluated the performance of dwgLASSO for survival time prediction using two microarray breast cancer datasets previously reported by Bild et al. and van de Vijver et al. Compared with the top 10 significant genes selected by conventional differential gene expression analysis method, the top 10 significant genes selected by dwgLASSO in the dataset from Bild et al. led to a significantly improved survival time prediction in the independent dataset from van de Vijver et al. Among the 10 genes selected by dwgLASSO, UBE2S, SALL2, XBP1 and KIAA0922 have been confirmed by literature survey to be highly relevant in breast cancer biomarker discovery study. Additionally, we tested dwgLASSO on TCGA RNA-seq data acquired from patients with hepatocellular carcinoma (HCC) on tumors samples and their corresponding non-tumorous liver tissues. Improved sensitivity, specificity and area under curve (AUC) were observed when comparing dwgLASSO with conventional differential gene expression analysis method. Conclusions The proposed network-based differential gene expression analysis algorithm dwgLASSO can achieve better performance than conventional differential gene expression analysis methods by integrating information at both gene expression and network topology levels. The incorporation of prior biological knowledge can lead to the identification of biologically meaningful genes in cancer biomarker studies.