Browsing by Author "Zwolak, M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Chaotic transport in low-dimensional superlatticesZwolak, M.; Ferguson, D.; Di Ventra, M. (American Physical Society, 2003-02)We predict that in arrays of quantum dots (0D superlattice) and arrays of one-dimensional quantum wires (1D superlattice) chaotic transport should be observed in the presence of an ac field and for a wide range of physical parameters, like the external dc bias, contact charge, doping levels, and disorder in the array. Time-dependent current oscillations set in the array due to the formation of electric domain walls when sequential resonant tunneling is the main transport mechanism between adjacent units. Such oscillations can then be forced into spatiotemporal chaos. A similar phenomenon has been predicted and demonstrated for solid-state superlattices. However, contrary to the latter case, the domain walls move across a larger number of units in the superlattice the lower the dimensionality, due to the different spatial distribution of the electric-field across the array in the three cases.
- DNA spintronicsZwolak, M.; Di Ventra, M. (AIP Publishing, 2002-07)We predict, using a tight-binding model, that spin-dependent transport can be observed in short DNA molecules sandwiched between ferromagnetic contacts. In particular, we show that a DNA spin valve can be realized with magnetoresistance values of as much as 26% for Ni and 16% for Fe contacts. Spin-dependent transport can broaden the possible applications of DNA as a component in molecular electronics and shed new light into the transport properties of this important biological molecule. (C) 2002 American Institute of Physics.