Department of Materials Science and Engineering (MSE)
Permanent URI for this community
The mission of the Materials Science and Engineering (MSE) Department at Virginia Tech is to lead the multidisciplinary efforts of the College of Engineering, the University, and the Commonwealth in the field of Materials Science and Engineering through our programs of undergraduate and graduate education, research, and continuing education. In service to our many constituencies, we are committed to the excellence of the contributions of faculty members, staff, and students, as judged by the principles and philosophies to which we aspire.
Browse
Browsing Department of Materials Science and Engineering (MSE) by Department "Institute for Critical Technology and Applied Science"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehiclesMaurya, Deepam; Khaleghian, Seyedmeysam; Sriramdas, Rammohan; Kumar, Prashant; Kishore, Ravi Anant; Kang, Min-Gyu; Kumar, Vireshwar; Song, Hyun-Cheol; Lee, Seul-Yi; Yan, Yongke; Park, Jung-Min (Jerry); Taheri, Saied; Priya, Shashank (2020-10-26)The transition of autonomous vehicles into fleets requires an advanced control system design that relies on continuous feedback from the tires. Smart tires enable continuous monitoring of dynamic parameters by combining strain sensing with traditional tire functions. Here, we provide breakthrough in this direction by demonstrating tire-integrated system that combines direct mask-less 3D printed strain gauges, flexible piezoelectric energy harvester for powering the sensors and secure wireless data transfer electronics, and machine learning for predictive data analysis. Ink of graphene based material was designed to directly print strain sensor for measuring tire-road interactions under varying driving speeds, normal load, and tire pressure. A secure wireless data transfer hardware powered by a piezoelectric patch is implemented to demonstrate self-powered sensing and wireless communication capability. Combined, this study significantly advances the design and fabrication of cost-effective smart tires by demonstrating practical self-powered wireless strain sensing capability. Designing efficient sensors for smart tires for autonomous vehicles remains a challenge. Here, the authors present a tire-integrated system that combines direct mask-less 3D printed strain gauges, flexible piezoelectric energy harvester for powering the sensors and secure wireless data transfer electronics, and machine learning for predictive data analysis.
- Abundance and Speciation of Surface Oxygen on Nanosized Platinum Catalysts and Effect on Catalytic ActivitySerra-Maia, Rui; Winkler, Christopher; Murayama, Mitsuhiro; Tranhuu, Kevin; Michel, F. Marc (2018-06-18)Oxygen at the surface of nanosized platinum has a direct effect on catalytic activity of oxidation−reduction chemical reactions. However, the abundance and speciation of oxygen remain uncertain for platinum with different particle size and shape characteristics, which has hindered the development of fundamental property−activity relationships. We have characterized two commercially available platinum nanocatalysts known as Pt black and Pt nanopowder to evaluate the effects of synthesis and heating conditions on the physical and surface chemical properties, as well as on catalytic activity. Characterization using complementary electron microscopy, X-ray scattering, and spectroscopic methods showed that the larger average crystallite size of Pt nanopowder (23 nm) compared to Pt black (11 nm) corresponds with a 70% greater surface oxygen concentration. Heating the samples in air resulted in an increase in surface oxygen concentration for both nanocatalysts. Surface oxygen associated with platinum is in the form of chemisorbed oxygen, and no significant amounts of chemically bonded platinum oxide were found for any of the samples. The increase in surface oxygen abundance during heating depends on the initial size and surface oxygen content. Hydrogen peroxide decomposition rate measurements showed that larger particle size and higher surface chemisorbed oxygen correlate with enhanced catalytic activity. These results are particularly important for future studies that aim to relate the properties of platinum, or other metal nanocatalysts, with surface reactivity.
- Pulmonary Exposure to Magnéli Phase Titanium Suboxides Results in Significant Macrophage Abnormalities and Decreased Lung FunctionMcDaniel, Dylan K.; Ringel-Scaia, Veronica M.; Morrison, Holly A.; Coutermarsh-Ott, Sheryl; Council-Troche, McAlister; Angle, Jonathan W.; Perry, Justin B.; Davis, Grace; Leng, Weinan; Minarchick, Valerie; Yang, Yi; Chen, Bo; Reece, Sky W.; Brown, David A.; Cecere, Thomas E.; Brown, Jared M.; Gowdy, Kymberly M.; Hochella, Michael F. Jr.; Allen, Irving C. (Frontiers, 2019-11-28)Coal is one of the most abundant and economic sources for global energy production. However, the burning of coal is widely recognized as a significant contributor to atmospheric particulate matter linked to deleterious respiratory impacts. Recently, we have discovered that burning coal generates large quantities of otherwise rare Magnéli phase titanium suboxides from TiO2 minerals naturally present in coal. These nanoscale Magnéli phases are biologically active without photostimulation and toxic to airway epithelial cells in vitro and to zebrafish in vivo. Here, we sought to determine the clinical and physiological impact of pulmonary exposure to Magnéli phases using mice as mammalian model organisms. Mice were exposed to the most frequently found Magnéli phases, Ti6O11, at 100 parts per million (ppm) via intratracheal administration. Local and systemic titanium concentrations, lung pathology, and changes in airway mechanics were assessed. Additional mechanistic studies were conducted with primary bone marrow derived macrophages. Our results indicate that macrophages are the cell type most impacted by exposure to these nanoscale particles. Following phagocytosis, macrophages fail to properly eliminate Magnéli phases, resulting in increased oxidative stress, mitochondrial dysfunction, and ultimately apoptosis. In the lungs, these nanoparticles become concentrated in macrophages, resulting in a feedback loop of reactive oxygen species production, cell death, and the initiation of gene expression profiles consistent with lung injury within 6 weeks of exposure. Chronic exposure and accumulation of Magnéli phases ultimately results in significantly reduced lung function impacting airway resistance, compliance, and elastance. Together, these studies demonstrate that Magnéli phases are toxic in the mammalian airway and are likely a significant nanoscale environmental pollutant, especially in geographic regions where coal combustion is a major contributor to atmospheric particulate matter.