Scholarly Works, Electrical and Computer Engineering
Permanent URI for this collection
Research articles, presentations, and other scholarship
Browse
Browsing Scholarly Works, Electrical and Computer Engineering by Department "Biomedical Sciences and Pathobiology"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
- Congenital infection of mice with toxoplasma gondii induces minimal change in behavior and no change in neurotransmitter concentrationsGoodwin, David G.; Hrubec, Terry C.; Klein, Bradley G.; Strobl, Jeannine S.; Werre, Stephen R.; Han, Qian; Zajac, Anne M.; Lindsay, David S. (American Society of Parasitology, 2012-08-01)We examined the effect of maternal Toxoplasma gondii infection on behavior and the neurotransmitter concentrations of congenitally infected CD-I mice at 4 and 8 wk of age when latent tissue cysts would be present in their brains. Because of sex-associated behavioral changes that develop during aging, infected female mice were compared with control females and infected male mice were compared with control males. Only the short memory behavior (distance between goal box and first hole investigated) of male mice congenitally infected with T. gondii was significantly different (P < 0.05) from that of uninfected control males at both 4 and 8 wk by using the Barnes maze test. The other parameters examined in the latter test, i.e., functional observational battery tests, virtual cliff, visual placement, and activity tests, were not significantly different (P > 0.05) at 4 and 8 wk. Concentrations of neurotransmitters and their metabolites (dopamine; 3,4-dihydroxyphenylacetic acid; homovanillic acid; norepinephrine; epinephrine; 3-methoxy-4-hydroxyphenylglycol; serotonin; and 5-hydroxyindoleacetic acid) in the frontal cortex and striatum were not different (P > 0.05) between infected and control mice at 8 wk of age. The exact mechanism for the observed effect on short-term memory in male mice is not known, and further investigation may help elucidate the molecular mechanisms associated with the proposed link between behavioral changes and T gondil infection in animals. We were not able, however, to confirm the widely held belief that changes in neurotransmitters result from chronic T. gondii infection of the brain.
- Dopamine Stimulates Propagation of Toxoplasma gondii Tachyzoites in Human Fibroblast and Primary Neonatal Rat Astrocyte Cell CulturesStrobl, Jeannine S.; Goodwin, David G.; Rzigalinski, Beverly A.; Lindsay, David S. (American Society of Parasitology, 2012-12-01)Toxoplasma gondii is an obligate intracellular parasite often found in the brain of humans. Research has shown a correlation between prevalence of antibody titers to T. gondii and psychological illness in humans. Recent studies indicate that individuals seropositive for T. gondii antibodies are more likely to develop psychotic disorders including schizophrenia, which is associated with changes in the dopamine neurotransmitter system. Dopamine in the brain may play a role in proliferation, chemoattraction, infection efficiency, or stage conversion of T. gondii. Because tachyzoites are the first developmental stage to reach the brain, the present study was conducted to determine the effects of dopamine on their development in vitro. In human fibroblast host cells, dopamine was added at either 100 nM or 250 nM to cell culture media, and the numbers of tachyzoites produced at 48 hr were determined and compared to vehicle-treated controls. An increase of tachyzoite numbers and increased destruction in cell monolayer were observed at both concentrations of dopamine. Dopamine used at 250 nM caused a significant (P < 0.05) increase in tachyzoites counts compared to controls. Dopamine antagonists (10 mu M) did not significantly alter dopamine-stimulated tachyzoite production in human fibroblasts. In primary neonatal rat astrocyte cell cultures, dopamine (200 mu M) significantly (P < 0.05) increased numbers of intracellular tachyzoites after 24 hr. The role that this increase plays in tachyzoite production under the stimulus of dopamine in the modulation of neural infection in humans awaits further studies.
- Establishing an immunocompromised porcine model of human cancer for novel therapy development with pancreatic adenocarcinoma and irreversible electroporationHendricks-Wenger, Alissa; Aycock, Kenneth N.; Nagai-Singer, Margaret A.; Coutermarsh-Ott, Sheryl; Lorenzo, Melvin F.; Gannon, Jessica; Uh, Kyungjun; Farrell, Kayla; Beitel-White, Natalie; Brock, Rebecca M.; Simon, Alexander; Morrison, Holly A.; Tuohy, Joanne L.; Clark-Deener, Sherrie; Vlaisavljevich, Eli; Davalos, Rafael V.; Lee, Kiho; Allen, Irving C. (Nature Research, 2021-04-07)New therapies to treat pancreatic cancer are direly needed. However, efficacious interventions lack a strong preclinical model that can recapitulate patients’ anatomy and physiology. Likewise, the availability of human primary malignant tissue for ex vivo studies is limited. These are significant limitations in the biomedical device field. We have developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 as a large animal model with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. In this proof-of-concept study, these pigs were successfully generated using on-demand genetic modifications in embryos, circumventing the need for breeding and husbandry. Human Panc01 cells injected subcutaneously into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment with growth rates similar to those typically observed in mouse models. Histopathology revealed no immune cell infiltration and tumor morphology was highly consistent with the mouse models. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. The ample tumor tissue produced enabled improved accuracy and modeling of the electrical properties of tumor tissue. Together, this suggests that this model will be useful and capable of bridging the gap of translating therapies from the bench to clinical application.
- Evaluation of Five Antischizophrenic Agents Against Toxoplasma gondii in Human Cell CulturesGoodwin, David G.; Strobl, Jeannine S.; Lindsay, David S. (American Society of Parasitology, 2011-02-01)An increasing interest in the association of the presence of antibodies to Toxoplasma gondii and the development of schizophrenia in patients has been generated over the last several years. Some antischizophrenia agents have been shown to have activity against T gondii in cell culture assays and to ameliorate behavioral changes associated with chronic T gondii infection in rats. In the present study, we examined the effects of commonly used antipsychotic and mood stabilizing agents (haloperidol, clozapine, fluphenazine, trifluoperazine, and thioridazine) for activity against developing tachyzoites of the RH strain of T. gondii in human fibroblast cell cultures. Neither haloperidol nor clozapine had a measurable effect. Fluphenazine had an IC(50) of 1.7 mu M, thioridazine had an IC(50) of 1.2 mu M, and trifluoperazine had an IC(50) of 3.8 mu M. Our study demonstrates that some agents used to treat schizophrenia have the ability to inhibit T. gondii proliferation in cell culture.
- High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunityRingel-Scaia, Veronica M.; Beitel-White, Natalie; Lorenzo, Melvin F.; Brock, Rebecca M.; Huie, Kathleen E.; Coutermarsh-Ott, Sheryl; Eden, Kristin; McDaniel, Dylan K.; Verbridge, Scott S.; Rossmeisl, John H. Jr.; Oestreich, Kenneth J.; Davalos, Rafael V.; Allen, Irving C. (2019-06)Background: Despite promising treatments for breast cancer, mortality rates remain high and treatments for metastatic disease are limited. High-frequency irreversible electroporation (H-FIRE) is a novel tumor ablation technique that utilizes high-frequency bipolar electric pulses to destabilize cancer cell membranes and induce cell death. However, there is currently a paucity of data pertaining to immune system activation following H-FIRE and other electroporation based tumor ablation techniques. Methods: Here, we utilized the mouse 4T1 mammary tumor model to evaluate H-FIRE treatment parameters on cancer progression and immune system activation in vitro and in vivo. Findings: H-FIRE effectively ablates the primary tumor and induces a pro-inflammatory shift in the tumor microenvironment. We further show that local treatment with H-FIRE significantly reduces 4T1 metastases. H-FIRE kills 4T1 cells through non-thermal mechanisms associated with necrosis and pyroptosis resulting in damage associated molecular pattern signaling in vitro and in vivo. Our data indicate that the level of tumor ablation correlates with increased activation of cellular immunity. Likewise, we show that the decrease in metastatic lesions is dependent on the intact immune system and H-FIRE generates 4T1 neoantigens that engage the adaptive immune system to significantly attenuate tumor progression. Interpretation: Cell death and tumor ablation following H-FIRE treatment activates the local innate immune system, which shifts the tumor microenvironment from an anti-inflammatory state to a pro-inflammatory state. The non-thermal damage to the cancer cells and increased innate immune system stimulation improves antigen presentation, resulting in the engagement of the adaptive immune system and improved systemic anti-tumor immunity. (C) 2019 The Authors. Published by Elsevier B.V.
- Identifying multi-hit carcinogenic gene combinations: Scaling up a weighted set cover algorithm using compressed binary matrix representation on a GPUAl Hajri, Qais; Dash, Sajal; Feng, Wu-chun; Garner, Harold R.; Anandakrishnan, Ramu (Nature Publishing Group, 2020-02-06)Despite decades of research, effective treatments for most cancers remain elusive. One reason is that different instances of cancer result from different combinations of multiple genetic mutations (hits). Therefore, treatments that may be effective in some cases are not effective in others. We previously developed an algorithm for identifying combinations of carcinogenic genes with mutations (multi-hit combinations), which could suggest a likely cause for individual instances of cancer. Most cancers are estimated to require three or more hits. However, the computational complexity of the algorithm scales exponentially with the number of hits, making it impractical for identifying combinations of more than two hits. To identify combinations of greater than two hits, we used a compressed binary matrix representation, and optimized the algorithm for parallel execution on an NVIDIA V100 graphics processing unit (GPU). With these enhancements, the optimized GPU implementation was on average an estimated 12,144 times faster than the original integer matrix based CPU implementation, for the 3-hit algorithm, allowing us to identify 3-hit combinations. The 3-hit combinations identified using a training set were able to differentiate between tumor and normal samples in a separate test set with 90% overall sensitivity and 93% overall specificity. We illustrate how the distribution of mutations in tumor and normal samples in the multi-hit gene combinations can suggest potential driver mutations for further investigation. With experimental validation, these combinations may provide insight into the etiology of cancer and a rational basis for targeted combination therapy.
- Identifying Transcriptional Regulatory Modules Among Different Chromatin States in Mouse Neural Stem CellsBanerjee, Sharmi; Zhu, Hongxiao; Tang, Man; Feng, Wu-chun; Wu, Xiaowei; Xie, Hehuang David (Frontiers, 2019-01-15)Gene expression regulation is a complex process involving the interplay between transcription factors and chromatin states. Significant progress has been made toward understanding the impact of chromatin states on gene expression. Nevertheless, the mechanism of transcription factors binding combinatorially in different chromatin states to enable selective regulation of gene expression remains an interesting research area. We introduce a nonparametric Bayesian clustering method for inhomogeneous Poisson processes to detect heterogeneous binding patterns of multiple proteins including transcription factors to form regulatory modules in different chromatin states. We applied this approach on ChIP-seq data for mouse neural stem cells containing 21 proteins and observed different groups or modules of proteins clustered within different chromatin states. These chromatin-state-specific regulatory modules were found to have significant influence on gene expression. We also observed different motif preferences for certain TFs between different chromatin states. Our results reveal a degree of interdependency between chromatin states and combinatorial binding of proteins in the complex transcriptional regulatory process. The software package is available on Github at - https://github.com/BSharmi/DPM-LGCP.
- Patient Derived Xenografts Expand Human Primary Pancreatic Tumor Tissue Availability for ex vivo Irreversible Electroporation TestingBrock, Rebecca M.; Beitel-White, Natalie; Coutermarsh-Ott, Sheryl; Grider, Douglas J.; Lorenzo, Melvin F.; Ringel-Scaia, Veronica M.; Manuchehrabadi, Navid; Martin, Robert C. G.; Davalos, Rafael V.; Allen, Irving C. (2020-05-22)New methods of tumor ablation have shown exciting efficacy in pre-clinical models but often demonstrate limited success in the clinic. Due to a lack of quality or quantity in primary malignant tissue specimens, therapeutic development and optimization studies are typically conducted on healthy tissue or cell-line derived rodent tumors that don't allow for high resolution modeling of mechanical, chemical, and biological properties. These surrogates do not accurately recapitulate many critical components of the tumor microenvironment that can impact in situ treatment success. Here, we propose utilizing patient-derived xenograft (PDX) models to propagate clinically relevant tumor specimens for the optimization and development of novel tumor ablation modalities. Specimens from three individual pancreatic ductal adenocarcinoma (PDAC) patients were utilized to generate PDX models. This process generated 15-18 tumors that were allowed to expand to 1.5 cm in diameter over the course of 50-70 days. The PDX tumors were morphologically and pathologically identical to primary tumor tissue. Likewise, the PDX tumors were also found to be physiologically superior to other in vitro and ex vivo models based on immortalized cell lines. We utilized the PDX tumors to refine and optimize irreversible electroporation (IRE) treatment parameters. IRE, a novel, non-thermal tumor ablation modality, is being evaluated in a diverse range of cancer clinical trials including pancreatic cancer. The PDX tumors were compared against either Pan02 mouse derived tumors or resected tissue from human PDAC patients. The PDX tumors demonstrated similar changes in electrical conductivity and Joule heating following IRE treatment. Computational modeling revealed a high similarity in the predicted ablation size of the PDX tumors that closely correlate with the data generated with the primary human pancreatic tumor tissue. Gene expression analysis revealed that IRE treatment resulted in an increase in biological pathway signaling associated with interferon gamma signaling, necrosis and mitochondria dysfunction, suggesting potential co-therapy targets. Together, these findings highlight the utility of the PDX system in tumor ablation modeling for IRE and increasing clinical application efficacy. It is also feasible that the use of PDX models will significantly benefit other ablation modality testing beyond IRE.
- Photonic Biosensor Assays to Detect and Distinguish Subspecies of Francisella tularensisCooper, Kristie L.; Bandara, Aloka B.; Wang, Yunmiao; Wang, Anbo; Inzana, Thomas J. (MDPI, 2011-03-07)The application of photonic biosensor assays to diagnose the category-A select agent Francisella tularensis was investigated. Both interferometric and long period fiber grating sensing structures were successfully demonstrated; both these sensors are capable of detecting the optical changes induced by either immunological binding or DNA hybridization. Detection was made possible by the attachment of DNA probes or immunoglobulins (IgG) directly to the fiber surface via layer-by-layer electrostatic self-assembly. An optical fiber biosensor was tested using a standard transmission mode long period fiber grating of length 15 mm and period 260 µm, and coated with the IgG fraction of antiserum to F. tularensis. The IgG was deposited onto the optical fiber surface in a nanostructured film, and the resulting refractive index change was measured using spectroscopic ellipsometry. The presence of F. tularensis was detected from the decrease of peak wavelength caused by binding of specific antigen. Detection and differentiation of F. tularensis subspecies tularensis (type A strain TI0902) and subspecies holarctica (type B strain LVS) was further accomplished using a single-mode multi-cavity fiber Fabry-Perot interferometric sensor. These sensors were prepared by depositing seven polymer bilayers onto the fiber tip followed by attaching one of two DNA probes: (a) a 101-bp probe from the yhhW gene unique to type-A strains, or (b) a 117-bp probe of the lpnA gene, common to both type-A and type-B strains. The yhhW probe was reactive with the type-A, but not the type-B strain. Probe lpnA was reactive with both type-A and type-B strains. Nanogram quantities of the target DNA could be detected, highlighting the sensitivity of this method for DNA detection without the use of PCR. The DNA probe reacted with 100% homologous target DNA, but did not react with sequences containing 2-bp mismatches, indicating the high specificity of the assay. These assays will fill an important void that exists for rapid, culture-free, and field-compatible diagnosis of F. tularensis.
- Real-time prediction of patient immune cell modulation during irreversible electroporation therapyBeitel-White, Natalie; Martin, Robert C. G.; Li, Y.; Brock, R. M.; Allen, Irving C.; Davalos, Rafael V. (2019-11-28)Immunotherapies have demonstrated limited efficacy in pancreatic ductal adenocarcinoma (PDAC) patients despite their success in treating other tumor types. This limitation is largely due to the relatively immunosuppressive environment surrounding the tumor. A focal ablative technique called irreversible electroporation (IRE) has been shown to modulate this environment, enhancing the efficacy of immunotherapy. One enhancing factor related to improved prognosis is a decrease in regulatory T cells (T-reg). This decrease has been previously unpredictable for clinicians using IRE, who currently have limited real-time metrics for determining the activation of the patient's immune response. Here, we report that larger overall changes in output current are correlated with larger decreases in T cell populations 24 hours post-treatment. This result suggests that clinicians can make real-time decisions regarding optimal follow-up therapy based on the range of output current delivered during treatment. This capability could maximize the immunomodulating effect of IRE in synergy with follow-up immunotherapy. Additionally, these results suggest that feedback from a preliminary IRE treatment of the local tumor may help inform clinicians regarding the timing and choice of subsequent therapies, such as resection, immunotherapy, chemotherapy, or follow-up thermal or non-thermal ablation.
- Retinal-input-induced epigenetic dynamics in the developing mouse dorsal lateral geniculate nucleusHe, Jianlin; Xu, Xiguang; Monavarfeshani, Aboozar; Banerjee, Sharmi; Fox, Michael A.; Xie, Hehuang David (2019-02-14)DNA methylation plays important roles in the regulation of nervous system development and in cellular responses to environmental stimuli such as light-derived signals. Despite great efforts in understanding the maturation and refinement of visual circuits, we lack a clear understanding of how changes in DNA methylation correlate with visual activity in the developing subcortical visual system, such as in the dorsal lateral geniculate nucleus (dLGN), the main retino-recipient region in the dorsal thalamus. Here, we explored epigenetic dynamics underlying dLGN development at ages before and after eye opening in wild-type mice and mutant mice in which retinal ganglion cells fail to form. We observed that development-related epigenetic changes tend to co-localize together on functional genomic regions critical for regulating gene expression, while retinal-input-induced epigenetic changes are enriched on repetitive elements. Enhancers identified in neurons are prone to methylation dynamics during development, and activity-induced enhancers are associated with retinal-input-induced epigenetic changes. Intriguingly, the binding motifs of activity-dependent transcription factors, including EGR1 and members of MEF2 family, are enriched in the genomic regions with epigenetic aberrations in dLGN tissues of mutant mice lacking retinal inputs. Overall, our study sheds new light on the epigenetic regulatory mechanisms underlying the role of retinal inputs on the development of mouse dLGN.
- Starting a Fire Without Flame: The Induction of Cell Death and Inflammation in Electroporation-Based Tumor Ablation StrategiesBrock, Rebecca M.; Beitel-White, Natalie; Davalos, Rafael V.; Allen, Irving C. (2020-07-28)New therapeutic strategies and paradigms are direly needed for the treatment of cancer. While the surgical removal of tumors is favored in most cancer treatment plans, resection options are often limited based on tumor localization. Over the last two decades, multiple tumor ablation strategies have emerged as promising stand-alone or combination therapeutic options for patients. These strategies are often employed to treat tumors in areas where surgical resection is not possible or where chemotherapeutics have proven ineffective. The type of cell death induced by the ablation modality is a critical aspect of therapeutic success that can impact the efficacy of the treatment and systemic anti-tumor immune system responses. Electroporation-based ablation technologies include electrochemotherapy, irreversible electroporation, and other modalities that rely on pulsed electric fields to create pores in cell membranes. These pores can either be reversible or irreversible depending on the electric field parameters and can induce cell death either alone or in combination with a therapeutic agent. However, there have been many controversial findings among these technologies as to the cell death type initiated, from apoptosis to pyroptosis. As cell death mechanisms can impact treatment side effects and efficacy, we review the main types of cell death induced by electroporation-based treatments and summarize the impact of these mechanisms on treatment response. We also discuss potential reasons behind the variability of findings such as the similarities between cell death pathways, differences between cell-types, and the variation in electric field strength across the treatment area.