Scholarly Works, Center for Intelligent Material Systems and Structures (CIMSS)
Permanent URI for this collection
Browse
Browsing Scholarly Works, Center for Intelligent Material Systems and Structures (CIMSS) by Department "Materials Science and Engineering"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Giant energy density in 001 -textured Pb(Mg1/3Nb2/3)O-3-PbZrO3-PbTiO3 piezoelectric ceramicsYan, Yongke; Cho, Kyung-Hoon; Maurya, Deepam; Kumar, Amit; Kalinin, Sergei; Khachaturyan, Armen G.; Priya, Shashank (AIP Publishing, 2013-01-01)Pb(Zr,Ti)O-3 (PZT) based compositions have been challenging to texture or grow in a single crystal form due to the incongruent melting point of ZrO2. Here we demonstrate the method for achieving 90% textured PZT-based ceramics and further show that it can provide highest known energy density in piezoelectric materials through enhancement of piezoelectric charge and voltage coefficients (d and g). Our method provides more than similar to 5x increase in the ratio d(textured)/d(random). A giant magnitude of d.g coefficient with value of 59 000 x 10(-15) m(2) N-1 (comparable to that of the single crystal counterpart and 359% higher than that of the best commercial compositions) was obtained. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789854]
- Giant self-biased magnetoelectric coupling in co-fired textured layered compositesYan, Yongke; Zhou, Yuan; Priya, Shashank (AIP Publishing, 2013-02-01)Co-fired magnetostrictive/piezoelectric/magnetostrictive laminate structure with silver inner electrode was synthesized and characterized. We demonstrate integration of textured piezoelectric microstructure with the cost-effective low-temperature co-fired layered structure to achieve strong magnetoelectric coupling. Using the co-fired composite, a strategy was developed based upon the hysteretic response of nickel-copper-zinc ferrite magnetostrictive materials to achieve peak magnetoelectric response at zero DC bias, referred as self-biased magnetoelectric response. Fundamental understanding of self-bias phenomenon in composites with single phase magnetic material was investigated by quantifying the magnetization and piezomagnetic changes with applied DC field. We delineate the contribution arising from the interfacial strain and inherent magnetic hysteretic behavior of copper modified nickel-zinc ferrite towards self-bias response. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4791685]